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1. PROBLEM IDENTIFICATION 

l. 1. Introduction 

Moisture content is a key quality characteristic in defining the 

grade of corn. If the moisture content of a load of corn presented for 

sale is higher than the acceptable trade standard, then the market value 

of this corn will be reduced, and its price will be discounted 

accordingly. 

Quality characteristics, such as moisture content in corn, must be 

measured in order to assign the appropriate grade to a commodity. But, 

the grade assigned is only as accurate as the methods by which its 

quality is determined. That is, if a measuring device or method is 

unreliable, then the grade is less informative, less valuable, and less 

effective in serving its economic purpose. 

Thus, the problem addressed in this thesis, that of measurement 

error in determining moisture content in corn, is considered a problem in 

the general area of grading. 

1.2. Grading and its Economic Purpose 

Grading is a method by which a commodity is classified according to 

its quality. Individual grades are defined with respect to certain 

physical attributes of the product that are considered to be indicative 

of its quality. Specified levels of these characteristics are grouped 

together into categories, and each category is assigned a grade in the 

form of a letter, number, or word. A set of grades, then, is a classifi-
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cation system designed to provide concise description of a product's 

quality. 

As indicators of a commodity's quality, and therefore its value, 

grades are intended to serve an economic purpose. The basic objective of 

a grading system is to provide market information in terms of furnishing 

uniform description of a product's quality. This has impact on both the 

operational efficiency and the pricing efficiency of the market. 

From the operational standpoint, grading 

1) allows for selling by description, rather than by personal 

inspection; 

2) reduces uncertainty between buyers and sellers, due to the 

standardization of the product by grade; 

3) increases specialization in the use of the product with respect 

to particular quality characteristics; 

4) reduces the expense of competitive brand advertising; and 

5) allows for product differentiation, enabling consumers to 

identify the product quality that most satisfies their prefer-

ences. 

In these ways, grading ultimately helps to reduce marketing costs by 

increasing the efficiency of the marketing process. 

In terms of pricing efficiency, grading 

1) allows for ease in communication of market information; 

2) expands the market area due to increased buying and selling by 

description; 

3) increases the level of competition for a product since the market 
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is larger; and 

4) aids in transmission of price signals between consumers and 

producers, directing the highest quality of the product to the 

end use of greatest value. 

Through these factors, grading more closely aligns the market for a 

particular commodity with that of perfect competition. Thus, the various 

grades of the product are channeled more efficiently to the various 

levels of demand. 

Furthermore, a grading system must be operational and functional . 

In order to fulfill the economic purposes of grading, the factors to be 

graded must reflect those quality characteristics demanded by users. 

These factors must be easily, uniformly, and accurately measurable . The 

grading system should be simple and widely understood, with the same 

terminology used at all levels of the marketing process. Finally, the 

costs of operating the system mus t be reasonable . 

Grades are usually, though not exclusively, established and 

administered by governments. Many agricultural products are graded, from 

fruits and vegetables to grains and oilseeds to livestock and meats. In 

particular, this study considers the grading of corn. 

1.3. The Grading of Corn 

Under the U.S. Grain Standards Act of 1916, which provided the first 

uniform national standards for the grading of grains, corn is divided 

into three classes, depending upon the shape, texture, and color of the 

kernel. The three classes of corn are Yellow Corn, White Corn, and Mixed 
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Corn. The classification of corn is further broken down into numerical 

grades, No. 1 through No. S. 'Dlese are based on the quality character-

istics of moisture content, test weight, broken corn and foreign material 

(BCFM), heat damage, and total damage. 

Moisture content. Moisture content is the amount of water in the 

kernel and indicates the amount of dry matter in the corn. Moisture 

content is important in two respects: 1) Buyers are purchasing the corn 

for the dry matter and nutrients that it contains, not for the water. 

Therefore, for most purposes, lower levels of moisture content are 

desired. 2) The amount of moisture is directly related to the 

storability of the corn--the higher the moisture content, the more likely 

is the deterioration and spoilage of the grain. Yet, corn kernels that 

are too dry are brittle and easily damaged, becoming more susceptible to 

contamination by mold, insects, or other infestations. For a particular 

sample of corn, moisture content is the percentage of the corn that 

consists of water, and is usually measured in the trade by electronic 

moisture meters. The reference standard method for moisture measurement 

is to place a preweighed sample of corn in an air oven at 103°C. for 72 

hours, weighing it again upon removal, and calculating the percentage 

weight loss. 

Test weight. Test weight is a volume measurement in pounds per 

bushel. It measures the density of the kernel and thus serves as an 

indicator of the amount of the grain that can be recovered through 

processing . Corn of high test weight generally contains more nutrients 

and less fiber, resulting in higher yield of processed products. 
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Broken corn and foreign material (BCFM). Broken corn consists of 

pieces of the corn kernel or cob fragments. Foreign material refers to 

extraneous material in the grain, such as dirt, weed seeds, and other 

grains. BCFM is any matter in the sample which will pass readily through 

a 12/64-inch seive, plus any nongrain material which can be hand-picked 

from the sample. BCFM is also an indicator of deterioration in that, as 

fine material, it packs closely, restricting air flow. BCFM is measured 

as a percentage of the total sample. 

Total damage and heat damage. Damaged kernels provide less nutrient 

value and may cause losses in processing. Damage may be due to mold, 

frost, fungus, sprouting, disease, insects, or heat. Damage is also 

measured as a percentage of the total sample. 

Table 1.1 gives the current U.S.D.A. grades and grade requirements 

for corn. The numerical grade classification is determined by the lowest 

quality grading factor. For example, a sample of corn may grade No. 2 

for all factors except, say, moisture content, for which it falls into 

the No. 4 category. The entire lot of grain is then graded as No. 4 

corn. 

1.4. The Economics of Substandard Quality 

U.S. No. 2 corn is accepted by the country grain trade as the 

standard contract grade. Corn exhibiting excessive levels of the 

properties listed in the official standards for No. 2 (see Table 1.1) is 

subject to market discounts. Since the quality characteristics of a lot 

of corn may be changed, either advertantly or inadvertantly, during its 
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Table 1.1. Grades and grade requirements for corna 

U.S. 

U.S. 

U.S. 

u.s. 
U.S. 

U.S. 

Grade 

No. 1 

No. 2 

No. 3 

No. 4 

No. 5 

Sample Grade 

Maximum limits of ••• 

Damaged kernels 
Minimum test Broken corn 

weight per and foreign Heat-damaged 
bushel Moisture material Total kernels 

(Pounds) (Percent) (Percent) (Percent) (Percent ) 

56.0 14.0 2.0 3.0 0.1 

54.0 15.5 3.0 5.0 0.2 

52.0 17.5 4.0 7.0 0.5 

49.0 20.0 5.0 10.0 1.0 

46.0 23.0 7.0 15.0 3.0 

U.S. sample grade shall be corn which does not meet the requirements 
for any of the grades from U.S. No. 1 to No. 5, inclusive, or which 
contains stones; or which is musty, or sour, or heating; or which has 
any commercially objectionable foreign odor; or which is otherwise of 
distinctly low quality. 

aFrom Official Grades and Standards of the United States (U.S.D.A., 1970). 
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journey through marketing channels, it may be tested, graded, and 

discounted at several levels of the marketing chain. This study focuses 

on the grading procedure at the level of first exchange, the movement of 

grain from the producer to the country elevator. Most of the corn 

marketed in Central Iowa and the Midwest moves via this route. 

The procedure is basically as follows: A farmer delivers his grain 

to his local country elevator either for sale or for storage. At the 

elevator, a sample is taken from each load using a mechanical probe . 1be 

sample is then tested for levels of the various quality characteristics. 

If these levels are below the standards necessary for contract grade 

No. 2, market discounts will be applied according to the amount of 

deviation within each characteristic. The total amount of the discount 

will then be deducted from the price bid for the corn, reducing the 

farmer's revenue from the sale. 

Moisture discounting occurs in one of two ways. If the grain is 

delivered to the elevator for storage, a fee is charged for drying. This 

fee is usually determined as cents per percentage point of moisture 

removed per wet bushel delivered. In addition, a weight shrink factor of 

1.35 percent per percentage point of moisure removed is applied to the 

original delivery weight. Since corn is usually dried to 14.0 percent 

moisture content for storage purposes, the "percentage points removed" is 

the difference between the moisture content of the delivered wet grain 

and 14.0 percent. Thus , the drying charge depends on the moisture 

content determined by testing the sample at delivery. 
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If the grain is delive r ed to the el evator for immediat e sale, a 

moisture discount is charged if the corn contains excess moisture . This 

discount covers the cos t of drying the corn to acceptable trade levels, 

and is usually char ged as a specified percent of the sale price . Again, 

i t depends on the moisture content leve l determined by testing the sample 

a t de live ry. 

It is important to note that the count ry elevator does not purchase 

grain from the farmer on the basis of the numerical grade. I nstead, it 

discounts for individual pr operties . Thus, the value of the corn t o the 

fa rme r is not based on the nume ri cal grade, but on the size of the 

discounts per quality characte ristic. And, the ainount of the discounts 

de pends on the difference between the properties as measured in the 

e levator's t ests and the standards. 

In economics, we are concerned with the value of a good, how that 

value is de t e rmine d, and the effects of that valuation on the partici-

pant s in the exchange of that good. Since discounting for s ubstandard 

quality charac t eristics r esults in reduc t ion of the value of cor n to the 

producer, g rading and discounting practices and procedures must be 

examined more closely . 

When a load of corn comes into a country elevator, a sample is taken 

and tested for the various quality properties . The t est results are then 

used to calculate the discounts, if any, to be charged. Since a single 

transaction may involve hundreds , perhaps thousands, of bushels of grain, 

an i naccuracy of only a couple of percentage points in the values 
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obtained from the sample may result in a substantial monetary loss (or 

gain) to the producer. 

During autumn harvest, when a large amount of corn moves directly 

from the field to the country elevator, the largest deviation from the 

standard U.S. Grade No. 2 occurs in the quality characteristic of 

moisture content. It is not difficult to see that moisture content 

represents the largest source of discounting of corn. Thus, errors in 

the determination of moisture levels by electronic moisture meter may 

have a strong effect on the valuation, or perhaps the misvaluation, of 

corn to the producer. 

1. 5. Sampling and Measurement Error 

Two sources of error are readily apparent in the testing procedure 

for any quality characteristic: sampling error and measurement error. 

Sampling error may be due to problems with the sampling devices or 

methods used . After a sample has been taken from the load, it is 

measured for the various quality characteristics. Measurement error may 

result from the instruments used or from the techniques employed . 

This study examines measurement error in determining moisture 

content in corn. Previous research procedures and results are useful and 

will now be reviewed. 

Sampling and testing procedures have been evaluated with respect to 

determining BCFM content in corn (Hurburgh and others, 1979a). Several 

probing devices, those commonly used to obtain the sample from the load 

of grain, were tested and compared. Analysis showed that the in-load 

suction device, which pulls the sample into the collection tube by a 
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vacuum, clearly collected excessive amounts of foreign mater ial. Based 

on these results, t he Iowa Legislature banned the use of the in-load 

suction device for obtaining samples to be tested for BCFM content. 

Also investigated was the relationship between the location in the 

load from which the sample is taken and the accuracy of the test for 

BCFM. Samples taken from the center of the load were found to contain 

higher than the average amount of BCFM for the load, whereas samples from 

the extreme corners contain lower than the average amount of BCFM. 

Therefore, these locations should be avoided when collecting a sample to 

be measured for BCFM content. In addition, it was recommended that at 

least two samples be taken from the load and averaged. Even if center 

and corner locations are avoided, there may still be a difference of as 

much as one to five percentage points between the sample and the load 

average, if only one sample is taken (Hurburgh and others, 1979a). 

In further research, moisture content sampling and measurement 

errors and BCFM sampling errors have been identified as being sufficient 

to cause financial losses. Research results suggested that the buyer, 

rather than the seller, benefits more often from these mistakes (Hurburgh 

and others , l 979b). 

Using data collected by Hurburgh and his research team (1979a and 

1979b), Udoh ( 1979) estimated the parameters of a probability distribu-

tion (assuming that the errors are normally distributed with constant 

variance) in order to determine the probability of improper discounting 

for moisture content and for BCFM content. For example, the probability 

that a sample of corn with a given true measure (considered to be the 
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oven measure) would be discounted when it should not be, was calculated . 

This may also be thought of as the probability that the moisture meter 

will give an incorrect reading when the moisture content is, in fact, 

15 .S percent, meaning that the corn should not be discoun ted. Udoh's 

results showed that corn with a true moisture content of 15.5 percent 

faces a probability of between eight and fifty-six percent of being 

discounted, due to errors in sampling and measurement . In addition, Udoh 

translated the measurement and sampling error amounts into dollar values 

meaningful to corn producers, concluding that discount error is a 

function of both types of error (Udoh, 1979). 

Using corn samples collected during the 1979 harvest, Rurburgh and 

his co-workers (1980) turned their attention to measurement error in 

moisture content testing. In the laboratory, corn samples were tested 

for moisture content using electronic meters of the brands and types used 

by country elevators and by federal grain inspectors, and using the 

reference standard method of 72 hours in an air oven at 103°C. For each 

brand of meter, measurement error, the difference between the meter 

reading and the oven measure, was plotted against moisture content 

determined by the oven method, and a "calibration correction line," or 

curve, was fit to the data, using ordinary least squares regression 

methods . For all meters except one, the estimated deviations from the 

oven measure increased through the mid-range of moisture content, t hen 

decreased . 

The calibration correction equation was significant for all meters 

studied, including the Motomco meter used by the Federal Grain Inspection 
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Service, which is calibrated to the oven measure. The Steinlite meter, 

the brand used by over 75 perce nt of the country elevators in Iowa, was 

one of two meters to show the largest error (Hurburgh and others, 1980). 

These results were used in a massive effort to recalibrate the moisture 

meters in Iowa before the 1980 harvest, with focus placed on moisture 

content in the low to middle ranges. 

Meter precision was also considered in this study. It was concluded 

that, as moisture content increased, the precision of the meters 

decreased, and, thus, their variability increased (Hurburgh and others, 

1980). 

Research in this area continued, with similar analysis carried out 

on samples of corn collected during the 1980 harvest. Again, calibration 

correction equations were estimated and used to modify previous recali-

bration of the meters, this time with focus placed on the higher ranges 

of moisture content (Hurburgh and others, 1981). Recalibration was 

completed before the 1981 harvest. 

This study uses Hurburgh's data from 1979, before recalibration 

began, and data from the 1981 and 1982 harvests, after recalibration was 

complete, in an additional attempt to analyze moisture content 

measurement errors, as well as to evaluate the effectiveness of meter 

recalibration. The goals are similar t o those of Udoh--to determine the 

probability of error in moisture content measurement. The results will 

set the stage for further research into the economics of more reliable 

determination of moisture content in the grading of corn. 
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2. OBJECTIVES 

The objective of this study is to evaluate the effects of 

recalibration of the moisture meters on measurement error in determining 

moisture content in corn . Since data from before and after recalibration 

are available, we have the opportunity to analyze the data from both 

periods and draw a comparison. In other words, we are attempting to 

answer the question: Did recalibrating the meters significantly affect 

the accuracy of measuring corn for moisture content at country 

elevators? 

More specifically, for each period of data, the probability that a 

load of corn will be misgraded with respect to moisture content will be 

determined, based on the true moisture content. The major focus of this 

study will be on the discount decision--that is, the decision to discount 

or to not discount the corn for excessive moisture content. Although 

measurement error affects the size of the discount and/or drying charges 

as well, that problem will receive only minor attention here. Finally, 

the results of the analysis of each data set will be compared so that a 

judgment may be made as to whether this probability has changed since 

recalibration of the meters. 

This is basically an extension of the work done by Udoh, with four 

major differences: 

1) The data base is larger and broader, with corn samples being 

obtained from various locations throughout the country for 

several years. 
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2) A change has occurred since Udoh's study~the recalibration of 

the moisture meters. Since data is available from both before 

and after this change, its effects may be evaluated. Thus, this 

study involves a comparison. 

3) Udoh's research dealt with both sampling and measurement errors 

and with combinations of the two. Here we will focus exclusively 

on measurement error in determining moisture content. 

4) Udoh assumed that the error variance was constant over the entire 

range of moisture content. Evidence from Hurburgh's studies 

suggests that this is not true. Instead it appears that the 

variance of the measurement errors, and, thus, of the meter 

measure, widens as moisture content increases. In this study, 

the existence of nonconstant error variances, if supported by 

appropriate statistical evidence, will be incorporated into the 

research procedure. 
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3. THE DATA 

Recalibration of the electronic moisture meters took place during 

the period 1980-1981, r esulting from extensive research undertaken by the 

Illinois- Iowa Moisture Meter Task Force. To facili tate their study, data 

sets were generated from samples of corn collected during the harvests of 

1979, 1980, 1981, and 1982, before, during, and after meter recalibra-

tion. Portions of these data sets make up the data base for this study. 

The two periods of data sets relevant to this study are those from 

1979, before recalibration took place, and 1981 and 1982, after recali-

bration was complete. The data from 1981 and 1982 wil l be pooled into 

one data set. Because meter calibration was the same f or both these 

years, the 1981 and 1982 data sets can be assumed to be representative of 

the same population. 

Samples of corn from various locations around the country were 

provided to the Grain Quality Research Laboratory of the Department of 

Agricultural Engineering at Iowa State University. Distribution of these 

samples by place of origin for 1979, 1981, and 1982 is given in 

Table 3.1. 

Table 3.1. Distribution of corn samples by pla ce of origin 

Origin 1979 1981 1982 

Iowa 196 806 977 

Illinois 15 0 0 

Outside Iowa 
and Illinois 101 195 72 

Total 312 1001 1049 
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Elaborate laboratory procedures were designed for dividing each corn 

sample into subsamples which were tested for various quality characteris-

tics, including moisture content. Details about the experimental design 

may be found in Hurburgh's dissertation (Hurburgh, 198la). All testing 

was done in the laboratory. Two methods were utilized to test for the 

moisture content of the corn. 

The reference standard method for determining moisture content was 

the air-oven method, as specified in Chapter XXI, Grain Equipment Manual 

GR 916-6, Federal Grain Inspection Service. This procedure involves 

placing a pre-weighed sample of corn in an air-oven at 103°C for 72 

hours, and weighing the sample again upon removal. 1lte percentage 

weight-loss is the percentage moisture content. 

Hurburgh's studies show that the variability of the oven method is 

not related to moisture content. With regard to the experimental design 

of his studies, the precision of the oven method fell in the realm of the 

accepted precision stated in the government standards (Hurburgh and 

others, 1980, p. 12 and Hur burgh, l 98la). Furthermore, according to 

Hurburgh, "1lte internal variance of the oven determination was small 

compared to the variance of a meter-to-oven comparison. Improvements in 

the precision of the reference method will not contribute significantly 

to more accurate meter calibrations" (Hurburgh, 198la, pp. 108-109). 

Thus, the variability of the oven method may be considered to be a random 

component of the variability of the meter measure. For these reasons, 

this study will consider the oven method to provide the true value of 
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moisture content of the corn. The variable T will denote true moisture 

content. 

The second method for measuring moisture content was by electronic 

moisture meters. The meters used were provided to the Grain Quality 

Research Laboratory by the manufacturers, and were representative of 

meters sold for commercial use (Hurburgh, 1980, pp. 5-6). The meters 

considered in this study are the Burrows 700, the Dickey-john GAC II, the 

Motomco 919, and the Steinlite SS250. The Steinlite SS250 is the most 

common meter to be found at Iowa's country elevators . The Motomco 919 is 

the meter used by the Federal Grain Inspection Service to measure 

moisture content in all corn that is sold in international commerce, and 

on all internal trades where U.S . grades are requested. 

Subsamples of corn were tested for moisture content using both 

methods. A portion of the subsample was tested using the oven method, 

which gave the value of its true moisture content, T. Another portion of 

the subsample was tested for moisture content with an electronic moisture 

meter. Three meter tests were performed on each subsample, giving three 

meter readings. The mean of these three readings was reported for each 

observation. Let M be the variable name denoting the individual meter 

readings, and M be the variable name denoting the mean of three meter 

readings on the same subsample. In addition, the sample variance of the 

three original meter readings was computed and is denoted by the variable 
s name V • 

Thus, each observation for each year for each meter contains values 

of the following variables : 
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T =true moisture content. 

M the mean of three individual meter readings of moisture 

content, the M. , where j • 1, 2, 3. 
J 

Vs - the sample variance of the three individual meter readings . 

Let subscripted small letters denote the observational values of these 

variables. That is, ti is the value of true moisture content for the 

i-th subsample of corn; the mij• j = 1, 2, 3, are the individual meter 

readings on the i-th subsample; and so on. Then, the i-th reported 

observation is obtained from the steps diagramed in Figure 3.1. There 

are n reported observations on M and vs in the data sets used in this 

study. Thus, there would have been 3n original observations on M, the 

individual meter readings. 

i-th subsample 
of corn 

i-th reported 
observation 

/ " 
> 1 3 

= 3 E mij 
j=l 

Figure 3.1 . Steps by which each reported observation is obtained 
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A summary of simple descriptive statistics for each variable by 

meter brand and by period is displayed in Table 3.2. It must be noted 

that there are no 1982 data for the Burrows 700 moisture meter, since the 

manufacturer has discontinued its production. Thus, the 1981- 82 period 

data for the Burrows actually contains observations for 1981 only. 
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Table 3. 2. Descriptive statistics for each variable by meter and period 

Moisture content Variance, v 

Number of Mean Minimum Maximum Mean Minimum Maximum 
Meter observations 
brand Period n M T M T M T 

79 611 20.64 19.94 11.47 9.31 39.67 37.27 0.101 o.oo 22.468 
Burrows 

81-82 1,000 22.63 22.80 9.67 6.17 41.43 40.82 0.080 o.oo 1. 613 

79 602 20.13 19.95 10.90 9.27 37.90 37.46 0.055 o.oo 1.538 
GAC II 

81-82 2,055 23.07 22.80 6.93 6.17 42.73 40.82 0.082 o.oo 3.209 

79 606 19. 73 20.08 10.22 9.31 34.62 37.25 0.100 0.00 19.536 N 
0 

Mot om co 
81-82 2,055 22.58 22.80 6.57 6.17 50.60 40.82 0.096 0.00 2.595 

79 596 20.50 19.82 11. 27 9. 27 35.57 37.46 0.046 o.oo 3.423 
Steinlite 

81-82 2,055 22.68 22.80 6.71 6.17 40.93 40.82 0.056 o.oo 2.392 
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4. ANALYTICAL RESEARCH PROCEDURE 

4.1. Introduction 

This chapter describes the research procedure used to analyze the 

data from each period, before and after meter recalibration. The results 

of these analyses will be compared so that the extent of the effects of 

recalibration can be evaluated. 

For the data from each period, the final result of the analysis will 

be the probability of the decision to discount being made incorrectly for 

a given level of moisture content. An incorrect discount decision will 

be the result of error in measuring the moisture content of the corn--

that is, if the meter measurement differs from the true value. 

Let M =meter measure, T = true moisture content, and E =measure-

ment error, all in percent. Then, E = M - T, or M = T + E. Previous 

studies have demonstrated that measurement error is related to the 

moisture content of the corn. Thus, measurement error may be assumed to 

be a function of true moisture content: E f(T). Since E is a function 

of T, M must also be a function of T: M = T + f(T) g(T). This study 

examines the problem of measurement error through the assumption of 

M = g(T). 

We are ultimately interested in determining the probability of 

measurement error. The question being asked, then, in terms of Mand T, 

is: Given a particular value of T, what is the probability that M will 

differ from T? In order to calculate probabilities, one needs a distri-

bution. Here we will assume that, for a given level of moisture content, 
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meter measures are drawn from a normal distribution. In order to specify 

the distribution, one needs its mean and variance. These may be 

estimated from the data. 

Let M.r be the meter measurement associated with true moisture 

content, T. Since meter values are drawn from a normal distribution, 
2 

~ ~ N(µT, oT) . MT, as a general term, stands for a family of random 

variables, each distributed normally. µT i s the family of means of these 

random variables; oi i s the family of variances. The members of the 
2 families ~· µT, and oT are each conditional upon the level of true 

moisture content, T. They are specified when a particular value of Tis 

specified. Given that Ta T, where T is some numerical value of T, M is 
T 

the random variable whose distribution is the distribution of meter 

measurements associated with true moisture content, T = T. M is a T 

particular member of the family of random variables, M.r· Mt 2 N(µ , o ), 
T T 

where µT and o~ are members of the families µT and oi, respectively. In 

summary, M is a particular random variable with a particular distribu-
t 

2 tion, namely N(µ , o ). 
T T 

Io order to specify the distribution comple tely , exact numerical 

values of the mean and the variance are required. Therefore, we need 

estimates of the distributional parameters, µ and 
T 

One method of estimating these paramete rs is simply to calculate the 

sample mean and the sample variance from the raw data. At each value of 

T, there is a distribution of meter measurements. The raw data provides 

a sample from this distribution at each T. For a given value of true 

moisture content, say TR t, M , the sample mean of meter measurements, T 
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and the sample variance of meter measurements may be calculated. 

These values may then be used as the parameter estimates in specifying 

the probability distribution of M • Note that M and s 2 are computed T T T 

from only the scatter of points at T • T (see Figure 4.1) and, thus, are 

totally unrelated to the sample mean and the sample variance at any other 

value of T. In other words, the scatter of meter measurements at each 

value of T is considered a single sample, independent of every other 

value of T. 

M 
A A 

-- MIC g(T) 

T T 

Figure 4.1. Graphical illustration of two methods for estimating 
the distributional parameters 

However, as noted earlier, there is a systematic relationship 

between the meter measurements and true moisture content across the 

entire range of moisture content. M may reasonably be assumed to be a 

function of T. In particular, µT , the mean of the distribution about ~, 

is assumed to be a function of T: µT • g(T). This function can be 

estimated from sample data using statistical regression analysis. 'llle 

estimated equation would be µT • g(T). Knowledge of these results can be 
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used in calculating estimates of the distributional mean and variance, 
A2 

~T and oT, at each T = T (see Figure 4.1). This procedure recognizes an 

underlying relationship between meter measurement and true moisture 

content , and, thus, utilizes more information than the first method 

described above . There, estimates of the individual means and variances 

use only the information at the par ticular individual level of moisture 

content being considered, whereas our estimates of the individual means 

and variances will draw upon information from the entire range of 

moisture content. 

The purpose of this chapter is twofold. First, regression theory 

will be appl i ed in the estimation of a variance function, the results of 

which will be incorporated into the estimation of M = g(T), the 

relationship between the meter measure of moisture content and the true 

value. We will show how the usual techniques are varied in order to 

accomodate the complications due to the nature of the problem and/or the 

data. Second , we will describe how the regression results will be 

applied in calculating the individual means and variances, and the 

desired probabilities. 

4.2. Statistical Regression Analysis 

4 . 2 . 1. Heteroscedasticity and the variance function 

The linear model describing the relationship between individual 

meter measurements of moisture content and the true moisture content, in 

matrix form, is 

M = T6 + U, ( 4 . 1) 
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where Mis a 3n x 1 column vector of original meter readings, Tis 

3n x k, a is k x 1, and U is a 3n x 1 column vector of random errors. In 

addition, k is the number of independent variables for which coefficients 

will be estimated, 3n is the number of individual meter readings, and n 

is the number of reported observations. M, T, and U are specified in 

detail in section 4.2.2 and the Appendix. Under the theory of ordinary 

least squares (OLS) regression, the assumption of homoscedasticity says 

that the variance of the stochastic error term is constant over the 

entire range of the independent variable. Furthermore, the variance of 

the dependent variable is equal to the variance of the error term~ Here, 
2 if OLS were applied, we would be assuming that var(U) n a ~ var(M) is 

homoscedastic. That is, under OLS, the variance of the meter measure, M, 

would be assumed to be constant over the entire range of true moisture 

content, T. Previous studies have suggested that this is not necessarily 

true. It is believed that the variance of measurement error, E = M - T, 

is nonconstant relative to T, so that the variance of the meter measure 

is nonconstant, as well. 

Violation of the assumption of equal variances, the existence of 

unequal variances, is known as heteroscedasticity in the language of 

econometrics. Heteroscedasticity is not uncommon in studies such as 

this, which are based on cross-sectional data. Since previous research 

suggests that the variance of the meter measurement is nonconstant 

relative to the level of the true moisture content, it is necessary that 

this hypothesis be tested statistically. 
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Several tests for heteroscedasticity are available. Some are 

general tests simply to answer the question of its existence; others try 

to identify the nature of the heteroscedasticity and usually presuppose 

some functional form of the individual variances in terms of the indepen-

dent variable. Only the test chosen for application in this study will 

be discussed here. For information about other tests, the interested 

reader is referred to the econometrics text by Judge, Griffiths, Hill, 

and Lee, which contains an entire chapter on heteroscedasticity, the 

various tests for its existence, and the situations in which each is most 

applicable (Judge and others, 1980). 

The test for heteroscedasticity applied in this study is based on a 

variation of the Park-Glejser test (Pindyck and Rubinfeld, 1981). This 

test is desirable because it will allow us to test for the existence of 

heteroscedasticity, as well as its form. The variation of interest to us 

involves regressing the absolute value of OLS estimated residuals on the 

independent variable, and testing the significance of the parameter 

estimates. Since most economic data consist of one replication per 

observation on the independent variable, the OLS estimated residuals may 

be thought of as "sample variances" at each point. But, as will be 

recalled from Chapter 3 describing the data, each of our observations 

includes a sample variance of three meter readings per true value. Thus, 

we are able to take advantage of the available data in application of 

this test for heteroscedasticity. 

Let V be the true variance of three individual meter readings. 

Since the variance of the meter measurements is believed to be related 
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to the true moisture content, we assume that V is a function of T: 

V = h(T). This relationship can be estimated using the sample variances 

Let V
s of three meter readings at each value of true moisture content. 

denote this n x 1 column vector of sample variances from the reported 

data. A typical element of v6 is 

where 
1 3 

m =- l: m 
i 3 j ... 1 ij 

and the mij are the individual meter readings, i = 1, 2, ••• , n, 

j - l, 2, 3, and n is the number of reported observations. 

The model to be estimated, in matrix form, is 

vs ... 'fa+ w, ( 4. 2) 

where a is a k x 1 vector of parameters, Tis n x k and is specified in 

the Appendix, and W is an n x 1 column vector of stochastic homoscedastic 

error terms. The ordinary least squares assumptions are: 

1) E(W) .. O. 

2) E(WW') • 2 a I, or, equivalently, 

a) 2 2 E(w
1

) ,. a for all i. 

b) E(wiwj) • 0 for all 1 * j. 
3) E(T'W) • O. 
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4) Tile independent variables (the columns of T) are linearly 

independent. 

5) Tile errors are normally distributed: 
2 W ~ N(O, a). 

Under OLS, the best linear unbiased estimate of a is 

a = 

and the variance-covariance, or dispersion, matrix of a is 

A 

var(a) D(~) = (T'T)- 1 • 

Two functional forms of the model in equation (4.2) will be 

estimated: linear, with k = 2, and quadratic, with k = 3. The goodness 

of fit statistics from the estimation will be used to judge which form is 

more appropriate. If the slope coefficient is significantly different 

from zero, then the assumption of heteroscedasticity will be adopted and 

incorporated into the succeeding analysis. 

Tile resulting estimated equation will be referred to as the 

estimated variance fucntion. Letting T' be an arbitrary 1 x k row vector 
T 

for a given value of the moisture content, T z T, the estimated variance 

function is 

As A 
v = T'a 

T T ' 

As 
where v is the estimated variance at T = T. In particular, when k = 3, 

T 

T = (1 T, T
2) and the estimated variance function is 

T ' 
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As Finally, V is an n x l column vector of estimated variances calculated 

for each observation on T: 

"' 6 _ ,,. 
V = Ta. 

An estimate of the variance function is valuable to this study in 

two respects. It provides a specification of the form of the hetero-

scedasticity to be used in estimating the model M = g(T) + U, based on 

the assumption var(M) = var(U) = V, where V is a diagonal matrix whose 

main diagonal elements are the true variances of three individual meter 

readings. Secondly, it will be used in estimating the variance of the 

distribution of M at each T. 

4.2.2. Generalized least squares estimation of M - g(T) 

Heteroscedasticity violates the classical assumptions of ordinary 

least squares, making OLS inappropriate for estimating the relationship 

between meter moisture content and true moisture content. 'nle model and 

assumptions of generalized least squares (GLS) estimation do accommodate 

the existence of heteroscedasticity. Tilus, if heteroscedasticity is 

supported by the significance of the estimated variance function in 

section 4.2.1, then GLS will be applied. 

The linear model describing the relationship between individual 

meter measurement of moisture content and true moisture content is 

M .. TB + U (4.3) 

with the following GLS assumptions: 
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1) E(U) = O. 

2) E(UU') = V. 

3) E(T'U) a 0. 

4) Tile independent variables (the columns of T) are linearly 

independent. 

5) Tile errors are normally distributed. 

M, T, ~. U, k, 3n, and n are as defined following equation (4.1) in 

section 4.2.l. M, T, and U are specified in the Appendix. In 

particular, notice assumption (2). 'nlis is the assumption of 

heteroscedasticity. Vis a 3n x 3n diagonal matrix of known values, by 

assumption. Specifically, 

v = 

0 

0 

v 
n 

where each v1 is the true variance of three individual meter readings on 

the same sample. nte vi are also assumed to be a function of true 

moisture content, such that the variance grows as true moisture content 

increases. In addition, the V-matrix, in order to satisfy GLS 
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assumptions, must be nonsingular (invertible) and positive definite. 

(The definition of positive definite may be found in Johnston, 1972, 

pp. 105-106.) 

Applying GLS estimation techniques, the best linear unbiased 

estimate of e in equation (4.3) is 

(4.4) 

A 

The variance-covariance, or dispersion, matrix of b is 

A A -1 -1 var(b) 2 D(b) = (T'V T) • (4.5) 

The model in equation (4.3) and the estimation results in equations 

(4.4) and (4.5) are for the original data, which include the individual 

meter readings of moisture content. But these original data were not 

reported. In fact, the reported data, as noted in Chapter 3, consist of 

the means of readings from three drops of a corn sample through the 

moisture meter. This grouping of the original observations removes some 

of the variability that we are attempting to study, and brings an 

additional complication to the estimation procedure. 

For the theory of regression applied to grouped observations, the 

reader is advised to consult Johnston, Econometric Methods, chapter 7 

(Johnston, 1972). There the procedure is described specifically for the 

case of an OLS problem, where grouping of data results in a 

heteroscedastic error term, thus requiring GLS techniques instead. 

In this study, the original data are believed to be heteroscedastic 

and are described by a GLS model. Thus, our final estimation procedure 
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must accommodate both heteroscedasticity in t he individual meter readings 

and the grouping of these observations . 

The relationship between the group means in our reported data and 

the original observations is 

and 

M • GM, 

T = GT, 

U =GU, 

where G is an n x 3n grouping matrix. Since each grouped observation is 

the mean of three original observations, 

G = 1/3 1/3 1/3 0 0 0 0 0 0 

0 0 0 1/3 1/3 1/3 0 0 0 

0 0 0 0 0 0 1/3 1/3 1/3 

Mand U are n x 1 column vectors of group means; Tis n x k. 

The model in terms of grouped data is 

M =TB + u (4.6) 

where the error variance structure is 

var(U) .. E(UU') •E(GUU'G') 

a G(E(UU'))G' a GVG'. 

The GLS estimate of 8 is 
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( 4. 7) 

AG Tile notation b specifies that this GLS estimate was calculated from 

grouped data. Tile variance-covariance matrix, or dispersion matrix , of 

bG is 

(4.8) 

D(b) = var(b). 

Some of the other regression results differ, but the relationship between 

the two can be derived algebraically. Tile derivation of these and other 

results concerning the application of the theory of grouped observations 

to this problem can be found in the Appendix . Nevertheless, the grouped 

data can be used to compute b, the estimate of the parameters of the 

model describing the original observations. 

I d 11 h i i Of bA G' n or er to actua y carry out t e est mat on we must 

consider the V-matrix further. Since the elements of the V-matrix are 

the true variances of three meter readings, they are not known values as 

required by GLS. But they can and will be estimated by the techniques 
A 

described in section 4.2.1. Let V be the estimate of V. Tile main 

diagonal elements of the V-matrix, the ~1 , will be the elements of the 

n x 1 column vector of estimated variances, Vs, where 

as defined in section 4.2.1. Tile estimation of SG and D(bG) will proceed 

with V replacing Vin equations (4.7) and (4 . 8). 
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Finally, we must consider briefly the question of func tional 

specification of the model in equation (4.6) . Is the r elationship 

between meter measurement and true moisture content linear or nonlinear? 

Plots of the data and results of previous s tudies suggest that the 

relationship between measurement error and true moisture content is 

quadratic . If this is so, then the functional form of M with respect to 

T would also be quadratic. To test this s tatistically, both linear 

(k = 2) and quadratic (k = 3) forms of equation (4.6) will be estimated . 

Appropriate goodness of fit statistics will be considered to judge which 

of the two forms is better. TI-le analysis will then proceed using the 

selected model. 

4.3. Testing for the Equality of the Parameters 

The purpose of this study is to evaluate the effects of 

recalibration of the moisture meters between 1979 and 1981. Tilus, we 

wish to compare the results of the data analysis from each period for 

each meter . At this point, these results consist of estimates of the 

relationships between the meter measure and true moisture content. The 

regression results from the two periods can be compared by testing the 

parameters from each period for equality. 

Section 4.2.2 modelled M = g(T) with equation (4.3) for the original 

data and equation (4.6) for the grouped data, and showed that the 
~G e-parameters in these models can be estimated by b given in equation 

(4.7), with V replacing V. The model will be estimated for each period, 
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and the parameter estimates will be compared by using an F-test for the 

equality of parameters. 

Let the subscript h, h • l, 2, reference the data and results as to 

their period, with period l being 1979, before recalibration, and period 

2 being 1981 and 1982 taken together, after recalibration. That is, el. 
AG 
b1 , and n1 are the parameters, the parameter estimates, and the number of 

grouped observations, respectively, for 1979, which is period 1. 

and n 2 are similarly defined for the pooled data from 1981 and 1982, 

which make up period 2. 

To test the null hypothesis RO : e1 .. e2 against the alternative 

HA e1 * e2 , we calculate the F-statistic: 

where 

and Denom = 

Num 
F =----Denom 

ESS(b~) + ESS(b~) 
3(n1+n 2) - 2k 

(4.9) 

+ 1. 

AG 
ESS(bh) denotes the error sum of squares, or residual sum of squares, 

associated with the estimation for period h, h ~ 1, 2, and k equals the 

number of parameters. Tile F-statistic of equation (4.9) possesses an F 

distribution with k and 3(n1+n 2) - 2k degrees of freedom. If the 

observed F value is significant at the 5 percent level, then the null 
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hypothesis will be rejected, supporting the alternative hypothesis that 

the parameters from the two periods are indeed different. 

Details of the derivation of the above F-statistic are presented in 

the Appendix. 

4.4. The Probability Distributions of Meter Measurement 

4. 4.1. Estimating the individual means and variances 

Once again recall that we wish to determine the probability of error 

in measuring the moisture content in corn. These probabilities will be 

developed in terms of the meter measure, M, and the true measure, T. In 
2 2 general, ~ - N(µT, oT) and, in particular, MT - N(µT, oT) for a given 

value of T = T. Estimates of these individual means and variances are 

necessary. The theory introduced in section 4 . 1 and the regression 

results from section 4.2 will be used in order to calculate estimates of 
2 µT and o , the means and variances of the individual distributions of M T T 

at each value of the moisture content, T = T. 

Recall that the model for the original data, if they were available, 

is 

M .. re + u 

with the heteroscedasticity assumption 

var(U) = E(UU') = V. (4.10) 

The parameter estimates would be provided by 
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where V, the estimated variance matrix, replaces V in the actual estima-

tion. The dispersion matrix for b is 

(4.11) 

2 We wish to derive estimates of µT and oT from these results. Call these 
A2 ~ 2 

estimates µT and oT, in general, and µT and oT for T = T in particular. 

Let T = T be represented in row vector form by T'. For example, if 
T 

the estimated model was quadratic, T' • (1 T , 

meter reading is given by 

M • T' b. 
T T 

~ 

2 
T, T ) . Then an estimated 

From regression theory, the value M provides an estimate of the condi-
T 

tional mean ~IT=T = µT of the distribution of Mat T • T. That is, 

is an estimate of µ • 
T 

Derivation of the variance of the distribution of M is a little 
T 

more complicated. Since we will be calculating the probability with 

respect to a single meter reading drawn from the distribution of meter 

readings at T • T, the variance required here is that of a predicted 

value. In addition, it must include the effects of heteroscedasticity. 
A 

Note that, now, M takes on the alternative interpretation provided 
T 

by regression theory, that of a single predicted value. The variance we 

need, then, is the variance associated with the predicted value, M • 
T 

Thus, given that M - T' a+ u is the actual meter reading at T - T, the 
T T T 
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variance of the predicted value as compared with the actual value is: 

var(M) • E[(M -M) (M -M )') 
T T T T T 

s E[(T'(b-8)-u ) (T'(b-B)-u )'] 
T T T T 

• T' {E[(b-B)(b-B)'J}T + E(u:). T T , 
(4.13) 

Since E[(b-8)(b-8)'] = var(b), the first term of equation (4.13) above is 

equal to T'[var(b)]T , and equation (4.11) is applicable. This is 
T T 

interpreted as the amount of variation in prediction due to parameter 

estimation. Tile second term of equation (4.13) is equal to v , where v 
T T 

is a diagonal element of the V-matrix in the heteroscedasticity assump-

tion of equation (4.10). Tilis is the amount of variation due to random 

error, which is heteroscedastic. Continuing, 

An estimate of v is 
T 

var(M) a T'[var(b)]T + v 
T T T T 

• T'D(b)T + v 
T T T 

v • T' a. 
T T 

from the variance function estimated in section 4.2.1. Therefore, an 
2 

estimate of o, , the variance of the distribution of M,, is provided by 

(4.14) 
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Finally, recall from section 4.2.2 and Appendix A that 

and 
A 

D(b) (T' (GVG' )-1T)-l, 

AG 
where b is the vector of parameter estimates for the model in equation 

(4.6) in section 4.4.2, which describes the grouped observations . 'lbus, 
~ 2 

the results in equations (4.12) and (4.14) concerning µ and o hold with T T 
AG A AG A 
b replacing b and D(b ) replacing D(b). 

In summary, given a particular value of true moisture content, 

T = -r, represented in row vector form by T', the estimates of the mean 
T 

and the variance of the individual probability distribution of M are: 
T 

(4 . 15) 

and 
A2 A 

o = var(M ) 
T T 

(4 . 16) 

For illustration, see Figure 4.2. 

4.4.2 . Calculating the probabilities 

Now that we have parameter estimates to use in specifying the 

probability distribution of each member of the family of random 

variables, MT, we can proceed with the calculation of t he conditional 

probability of error in measurement for a given level of true moisture 

content. 



www.manaraa.com

40 

Probability M 

M 

MT = T~bG 

a; = T~D(bG)TT + ;T 

Figure 4.2. Graphical illustration of distributional parameter 
estimates obtained from regression results 

Recall that, for a given T • T M ~ N(µ 
' T T' 

o2), where the estimates 
T 

2 of µ and o are given by µ in equation (4.15) 
T T T 

A2 
and o in equation 

T 

(4.16), respectively. We wish to determine the probability that the 

meter measurement, M, will differ from a particular value of T. For 

example, given that T = T, we may be interested in the probability that 

the corresponding meter measurement, M , will be greater than a specified 
T 

value of M, say m. This may be computed as follows: 

Pr(M >m I T=-T) • 
T (

M -µ 
Pr ~ T 

0 
T 

m-µ 

>-f) 
T 

- Pr( z ) z ) , m,T 

where M , the meter measurement associated with T = T, is a random 
T 

variable with mean µ and standard deviation a • Since the meter 
T T 

(4 .17) 
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measurements are, by assumption, normally distributed, 
M -µ 

1 1 has the 
<J 

t 

standard normal distribution with mean equal to zero and standard devia-

ti on equal to one . That is, 
M -µ 

T 

<J T 

T = Z, where Z ~ N(O, 1) . 

In practice, l\ and <J will be replaced by their estimates, µ and 
t T 

o, respectively, calculated from equations (4.15) and (4 . 16), found in 
T 

section 4 . 4.1. Because the sample from which these estimates are made is 
M -µ 

sufficiently large, the distribution of T T --- so closely approximates the 
<J 

T 

standard normal that it may be used in determining the probability in 

equation (4 . 17) . 

Finally, 
m-µ 

T --= z 
<J 

T 

m,-r' which is the observed value of the random 

variable Z, when µT and o
1 

are replaced by their estimates, ii, and <J , 

respectively. Note that z depends not only on the specified true 
m,T 

moisture content, T, but on m, the designated meter value, as well . 

is a number since m, µT, and o
1 

are numbers. 

T 

z 
m,T 

After z is computed, we need only to consult the standard normal rn, T 

tables in order to compute the probability in equation (4 . 17) . 

The decision concerning whether to discount for excessive moisture 

content depends on the meter reading. Corn will be graded No . 2 yellow 

corn if the moistur e content as determined by the electronic moisture 

meter is less than or equal to 15.5 percent. If the meter reading is 

greater than that amount, the price that the farmer receives for t he corn 

will be discounted. Thus, the corn will be discounted by mistake if the 

meter reads greater than 15.5 percent when the moisture content is indeed 
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less than or equal to 15.5 percent. Therefore, the probability of corn 

being discounted when it should not be discounted is : 

Now, suppose we have a sample of corn with a true moisture content 

of T = T, where T is some particular value that is less than or equal to 

15.5 percent. Note that this corn meets the standards for U.S. Grade 

No. 2, and it should not be discounted for excessive moisture content. 

If the meter reads a value, M , that is greater than 15.5 percent, then 
T 

the corn will be discounted by mistake. We wish to know the probability 

that this will happen. Given that T = T, and applying equation (4.17), 

we have 

Pr(corn with true moisture content equal to T being discounted) 

= Pr(M )15.5IT2 T) 
T 

A 

(

M -µ 
Pr : T 

0 
T 

Since Z is distributed as standard normal, we now need only to consult a 

standard normal table to obtain this probability. 

Using this method, probabilities will be calculated at values of T 

that are smaller than 15.5 percent. Since actual meter readings are in 

tenths, the selected values of T will be at every one-tenth of a 

percentage point within a relevant range. We can then plot these 

probabilities against the values of T. The resulting g.raphs will provide 
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illustration of how this probability of incorrect discounting is related 

to true moisture content. 

Similarly, we can determine the probability of corn not being 

discounted when it should be discounted, with respect to trade standards. 

This will happen if the electronic moisture meter reads a value less than 

or equal to 15.5 percent when the corn has a true moisture content 

greater than 15 . 5 percent. In other words, we are interested in 

Pr(M~15 .5 IT>15.5). 

Now suppose we have a sample of corn with the moisture content of 

T 2 T and that T is some value larger than 15.5 percent. This corn 

should be discounted for excessive moisture content, but it will not be 

if the meter reading, M , is less than or equal to 15.5 percent. So, 
T 

given T • T, the probability of not discounting when we should is equal 

to 

Pr(M (15 .5I T•T) m 
T- P T T 

(
M -µ 

r A 

0 
T 

where Z - N(O, 1). This probability can now be obtained simply by 

consulting the standard normal table. 

(4.18) 

The probability in equation (4.18) will be computed for values of T 

that are greater than 15.5 percent. The selected values of T will be at 

every one-tenth of a percentage point within a relevant range. These 

probabilities will be plotted against the values of T, with the resulting 
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graphs providing illustration of the relationship between the probability 

of this type of incorrect discounting and true moisture content. 

It is necessary to emphasize that we are dealing with conditional 

probabilities here. 1be probability distribution of meter measurement 

from which these probabilities are calculated depends on the selection of 

T. Yet, by subtracting the mean and dividing by the standard deviation 

of the particular distribution of interest, we will always obtain the 

standard normal distribution and we can always determine the desired 

probability . 

In fact, we need not restrict ourselves to considerations of only 

the probability of making an incorrect discount decision (discounting 

when we should not, or not discounting when we should). The method 

described in this section can be generalized easily so that we may 

compute the probability relating to any size of measurement error. All 

that is needed is a value for the true moisture content and either the 

error size or the meter reading of interest. 

For instance, we may be interested in the probability that the meter 

will read a value larger than the true moisture content. That is, given 

that T = T, we could calculate the probability that M will be greater 

Notice that, in this case, m of equation (4.17) is equal to T . 

Subtracting the estimated mean of the distribution of M and dividing by 
T 

its standard deviation, we arrive at the observed value of Z, from which 
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we can determine this probability: 

)T:µT) 
T 

m Pr(Z ) z ). (4.19) T,T 
A numerical example of equation (4.19) may be helpful to illustrate 

its use. Let T = 20.0 percent . Then, the probability of the moisture 

meter reading a value greater than 20.0 percent would be calculated as 

follows: 

A A 

Pr(M20 _0>20.0IT=20.0) -
M -µ 

p ( 20.0 20.0 r A 

0 20.0 

> 
20 - ~-µ20 .o) 

0 20 .0 

K Pr(Z > z20.o,20.o). 

M20.0 denotes the random variable representing the distribution of meter 
A 

readings when the true moisture content is 20.0 percent. µ20.0 and 0 20 •0 
are the estimated mean and standard deviation, respectively, of that 

distribution. z20 _0 , 20 •0 is the observed value of Z associated with 

these specifications, when m = 20.0 and T = 20.0. 

The probability in equation (4.1.9) will be calculated for values of 

T, in tenths, within a relevant range. 'llle results of the calculations 

will be plotted, as in the previous two cases. 

We may also be interested in the probability that the measurement 

error will be larger (or smaller) than a certain size. Let E be the 
T 

random variable whose distribution is that of measurement error at T • T, 

and €be the designated error size. Then this probability is: 
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• Pr(Z ) z ). T+£ ,T (4.20) 

A numerical example of this situation might be if we were interested 

in the probability of the size of the measurement error being greater 

than, say, 1.0 percent. Then £ - 1. 0 and the probability is calculated 

as follows: 

Pr(E )l . OIT•T) • Pr(M )T+l.OIT0 T) 
T T 

(
Mt -µT 

.. Pr - A--
0 

T 

,,. Pr( z > z ) • T+l.0,T 

Probabilities would be computed for values of T, in tenths, within a 

relevant range. Specifically, if T ,,. 17.0 percent, the probability of a 

measurement error larger than 1.0 percent would be 

Pr(E17 •0>1.0IT=l7.0) .. Pr(M17 •0>18.0IT•l7.0) 

18 ·~µ17.0) 
0 17 .o 

- Pr(Z > zl8.0,17 . 0) (4 .21 ) 

since T + £ in equation (4 . 20) is equal to 17.0 + 1.0 ~ 18.0. 
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In each of the previous examples, in order to calculate the desired 

probabilities, Twas, in a sense, an independent variable and allowed to 

vary. The value of min equation (4.17) was fixed or depended on the 

value of T. One final type of conditional probability may be calculated 

with T fixed and m allowed to vary. We may ask this question: Given a 

sample of corn with true moisture content, T = r , what is the probability 

that the meter will read a value greater than specified values of m? For 

example, if T = 15 .5 percent, then this probability is 

Pr(M >mjT=l5.5) 
15.5 

= Pr(Z > zm,15.5), 

and would be calculated for values of m, in tenths, within a relevant 

range. In particular, given that T - 15.5, the probability that the 

meter reading will be greater than, say, m 2 12.0 percent, is 

(

M -µ 
Pr(M15 _5>12.0IT=l5.5) ~ Pr 15: 5 15• 5 

0 15.5 

> 12 ·~-µ15.5) 
0 15 . 5 

c Pr(Z) zl2.0,15 . 5). 

Ideally, a graph of the resulting probabilities of this type, for 

any T - T, should look like the one in Figure 4.3. 

For example, the probability that the meter reads greater than 12.0 

percent when the true moisture content is, indeed, 15.5 percent, should 

be one: 

Pr(M15 _5>12.0jTml5.5) • 1. 
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Probability 

0 

Figure 4.3. Ideal graph of probabilities of the form Pr(MT>mlT=T) 
with T = T fixed 

But the probability of the meter reading being greater than 20.0 percent 

when T = 15.5 percent should be zero: 

Pr(M15 _5>20.0IT=l5.5) = O. 

Finally, notice that the observed value of Z depends on both the 

given true moisture content, T, and the chosen meter reading, m, or error 

size, €, of interest. For instance. consider the example in equation 

(4 .21), Pr(E>l.OIT=l7.0). Suppose that we also want to know 

Pr(E17 •0>0 . 5IT=17 . 0). The true moisture content remains the same in both 

problems, but the designated error size has changed . Therefore, the 

observed values of Z will be different in the two problems . In the 
A 

second problem, z = 17.5,17.0 
(17.o+0.5)-µ17 0 

A • , which is clearly not equal 
0 11.0 

to zl8.0,17.0 = 
(17.o+l.0)-µ17.0 

The notation for the observed value of 

Z serves to emphasize its relation to both the true moisture, T, and 

either m or e . 
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In summary, the procedure outlined in this section is versatile and 

can be applied in calculating several types of conditional probabilities 

of meter er ror in measuring moisture content in corn . One needs only to 

specify the values of m and T in equation (4 . 17) in accord with the 

question being asked. 
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5. THE RESULTS 

5.1. Regression Results 

5.1.l. Estimated variance functions 

The model in equation (4.2), which describes the relationship 

s between the sample variances, V , and true moisture content, T, was 

estimated by the ordinary least squares methods described in section 

4.2.1 for each moisture meter for each period. Both linear and quadrati~ 

forms were estimated. Since the variance function was estimated as a 

means of testing for heteroscedasticity in equation (4.3), the 

t-statistics for significance of the parameter estimates, especially for 

the slope parameter, are relevant. 2 The R value, which gives the propor-

tion of variation in v8 attributable to the model , was also considered. 

For this study, the greater the amount of variation explained, the 

better, since the estimated variances from this function are used in the 

generalized least squares (GLS) estimation in section 4.2.2. Both the t-

statistics and the R2 values were judged in order to choose the better 

functional form of the model in each period. 

The estimation results for the Burrows, GAC II, Motomco, and 

Steinlite meters are summarized in Tables 5.1, 5.2, 5.3 , and 5.4, 

respectively. All estimated equations were significant at the 0 .1 

percent level. The functional form selected as the more appropriate is 

noted by reference to a footnote. 

The selected variance functions for each meter and each period were 

then used to provide estimates of the elements of the V-matrix, the 
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Table 5.1. Estimated variance functions for the Burrows meter 

Burrows 

1979 

1981-82 

Linear model 

A 

V = -0.135 - 0.00964T 
(-7.55)b (11. 19) 

V = -0.135 + 0. 00936T 
(-11.17) (18 .12 ) 

R2 = 0 .172 

R2 = 0.250 

aThe selected model of the variance function. 

Quadratic model 

V = 0.193 - 0.0219T + 0.000694T2 a 
(-3 .50) (-4.29) (6.26) 

V = 0.0721 - O. OlOOT + 0 . 000420T2 a 
(1 .74) (-2 .67 ) (5 .21 ) 

ht-statistics for significance of parameter estimates. 

R2 0.223 

2 R = 0.270 
VI ...... 
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Table 5. 2. Estimated variance functions for the GAC II me ter 

GAC II 

1979 

1981-82 

Linear model 

~ 

V = -0 .131 + 0 . 00923T 
( - 10 . 60)b (15.50) 

A 

V = -0.130 + 0 . 00914T 
( - 12.18) (20 . 06) 

R2 "' 0.287 

R2 = 0.167 

8 The selected model of the variance function. 

Quadratic model 

V = 0 . 207 - 0.0231T + 0 . 000709T2 a 
(5 . 62) (-6.82) (9.67) 

V = 0 . 174 - 0 . 0216T + 0 .000716T2 a 
(6.09) (-7.91) (11.41) 

ht-statistics for significance of parameter estimates. 

R2 = 0 .384 

R2 0.217 

V1 
N 
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Table 5.3. Estimated variance functions for the Motomco meter 

Motomco 

1979 

1981-82 

Linear model 

" V = - 0. 127 + 0 . 00931T 
( -10 . 52)b (16 . 07) 

A 

V = -0 . 154 + 0.0109T 
(-11 . 65) (18.65) 

0.302 

R2 = 0 . 147 

aThe selected model of the variance function. 

Quadratic model 

V = 0 . 0827 - 0 . 0107T + 0 . 000438T2 a 
(2.21) (-3.13) ( 5 . 93) 

V = 0.127 - 0.0172T + 0 . 000652T2 a 
(3 . 43) (-4 . 92) (8 . 16) 

bt-statistics for significance of parameter estimates. 

R2 = 0 . 341 

2 R = 0 .174 
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Table 5.4. Estimated variance functions for the Steinlite meter 

Steinlite 

1979 

1981-82 

Linear model 

A 

V ~ -0.0464 + 0.00404T a 
(-7.lS)b (12.83) 

V = -0.0901 + 0.00623T 
(-11.85) (19.85) 

2 R • 0.219 

R2 • 0.159 

8 The selected model of the variance function. 

Quadratic model 

V m 0.00916 - 0.00132T + 0.000119T2 
(0 .45) (-0.70) (2.87) 

V ~ 0.0897 - 0 . 0118T + 0.000419T2 a 
(4.45) (-6.21) (9.61) 

ht-statistics for significance of parameter estimates. 

2 R • 0.229 

R2 • 0 .196 
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variance-covariance matrix of the error term of the model in equation 

(4.3), which related the meter measure, M, and T. Examples of the 

calculations follow. 

The es timated variance of the meter measure given that T • 14.7 

percent, for the Steinlite meter in 1979, is 

~ 

v 14 _7 = -0.0464 + 0.00404(14.7) 

a 0.01307. (5.1) 

For the Motomco meter in 1981-82, this estimated variance, when T = 15.9 

percent, is 

v 15 •9 = 0.127 - 0. 0172(15 .9) + 0. 000652(15 .9) 2 

= 0.01805. (5.2) 

If T ~ 20.0 percent, then the estimated variance of the meter measure, 

for the GAC 11 meter in 1979, is 

v 20 •0 = 0.207 - 0.0231(20.0) + 0. 000709(20 . 0) 2 

~ 0.02834. (5 .3) 

5.1.2. Estimates of M = g(T) 

The function M • g(T), relating the meter measure and the true value 

of moisture content, was described by the statistical model in equation 

(4.6), and was estimated by the generalized least squares techniques 
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explained in section 4. 2. 2. Both linear and quadratic forms 111ere 

es timated. The t-statistics for s ignifi cance of the parameter estimates, 

and the standard errors of the estimates were considered in choosing the 

more appropriate functional form. 
2 In addition, since the usual reported R value is not relevant in 

GLS r egressions such as this one, two other goodness-of-fit criteria were 

cons idered. One of these was the mean-squared error, MSE, of the 

regression. This is def ined to be the er ror sum of squares (ESS) divided 

by the number of error degrees of freedom, and in GLS models , it is an 

estimat e of a scalar multiplier of the variance of the error term. 

Smaller values of MSE are preferred to larger ones . 
2 Furthermore, an alternative to the usual R goodness-of-fit measure 

in GLS regressions is the square of the simple correlation coefficient 

be tween the actual and predicted values, denoted r~ M• This will be , 
calculated as well. Th 1 i 2 ,. h b e c oser s rM M to one, t e etter . , 

The estimation results for each period are summarized in Tables 5.5, 

5.6, 5 .7, and 5 .8 for the Burrows, GAC II, Motomco, and Steinlite meters, 

r espec t ively. 

percent level . 

All estimated equations were significant at the 0. 1 
2 A The t-statistics, MSE and rM M' are reported for each , 

estima t ed model. The functional form judged to be the more appropriate 

is noted by reference to a footnote. 

For each meter, the selected form of M = g(T) will be used to 

estimate the mean of the distribution of mete r measurements at a given 
,. 

value of T. Example calculations of M follow. 
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Table S.S. Estimates of M = g(T) for the Burrows meter 

Burrows Linear model 

A 

M = -0.711 + l. 0729T 
( -S .26)b ( 141.01) 

MSE = 48.0679 r~,r1 = 0 .910 
1979 

M = - 2.1S4 + l.0966T a 
(-18.04) (170 . 60) 

1981-82 2 A MSE = 74.686 rM,M = 0. 962 

8 The selected model of M = g(T). 

Quadratic model 

M = -1.530 + l.160T - o.00221r2 a 
(-3. 4S) (2S . 37) (-1.94) 

MSE = 47 . 8S 

M = -1.389 + l.0176T + 0.00189T2 
(- 3. 06) (22 .33) (l.7S) 

MSE = 74.S30 

ht-statistics for significance of parameter estimates. 

r~,M. = o. 972 

2 A rM,M = 0.961 
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Table 5.6. Estimates of M = g( T) for the GAC II meter 

GAC II Linear model 

A 

M = - 0 .41 3 + l.0325T M = -1.683 + 
( -3.45)b (154.45) ( -4. 32) 

1979 
MSE = 39.127 2 ~ rM,M = 0 .97 4 MSE = 38 . 438 

A 

M = -1.670 + l.0811T M = 0.740 + 
( - 21.42) (263.46) (2.84) 

1981-82 
MSE = 65.933 r2 ~ -M,M - 0 . 967 MSE = 63 . 031 

aThe selected model of M = g(T). 

ht-statistics for significance of parameter estimates. 

Quadratic model 

l.167T - 0 . 00340T2 
(29 . 25) (-3 .43) 

0.821T + 0 . 00656T2 a 
(30 . 23) (9.68) 

a 

2 ~ 
rM,M = 

2 A 

rM,M = 

0 .977 

0 . 970 
\J1 co 
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Table 5.7. Estimates of M = g(T) for the Motomco meter 

Motomco 

1979 

1981-82 

Linear model 

A 

M = 0.502 + 0 .961T 
(3 .90)b (129 .1 5) 

MSE = 48 . 73 

M = -1.51 2 + l. 0529T 
(-22 . 22) (288 . 47) 

r~,M .. o. 963 

MSE = 49.124 r~,M = 0 .966 

aThe selected model of M = g(T) . 

Quadratic model 

M = -1.598 + l.189T - 0 .00576T2 a 
(-4.01) (28 . 61) (-5.56) 

MSE = 46.40 

M = 0 .127 + 0.869T + 0.00474T2 
(0 . 60) ( 38. 08) (8 .16) 

MSE = 47 . 579 

M = 0 . 883T + 0 . 00441T2 a 
(221 .36) (24 . 01) 

MSE = 47.564 

ht-statistics for significance of parameter estimates. 

r~,M = o . 970 

r~,M = o.965 

r~,M = o .965 
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Table 5.8. Estimates of M = g(T) for the Steinlite meter 

Steinlite 

1979 

1981-82 

Linear model 

A 

M = 1.363 t 0. 967T 
(11.34) (130 . 27) 

MSE = 99.148 

M = -1.452 + l . 0516T a 
(-21.38) (288.03) 

MSE = 87.258 

2 A rM,M = 0 . 976 

r~,M = o. 976 

aThe selected model of M = g(T). 

Quadratic model 

A 

0.00944T2 a M = -1 . 948 + l.336T -
( - 5.18) (32.86) (-9 . 23) 

MSE = 86.740 

M = -1.1 14 + l.014T + 0.000956T2 
(- 4 . 97) (42 . 43) (1.58) 

MSE = 87 .192 

ht-statistics for significance of parameter estimates. 

2 A 

rM,M = 0.983 

r~,M = o. 976 
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Let T - 14.7 percent. Tile expected value of meter moisture content, 
A 

M, for the Steinlite meter in 1979 is 

A 2 
M14 •7 = -1.948 + 1.336(14.7) - 0.00944(14 .7) 

15.65. (5.4) 

For the Motomco meter in 1981-82, the estimated mean meter reading when 

T = 15.9 percent is 

M15 •9 = 0 .883(15.9) + 0 . 00441(15.9)
2 

15.15. (5 .5 ) 

If the true moisture content is T = 20.0 percent, then the expected meter 

reading for the GAC II meter in 1979 is 

A 2 
M20.0 = -1.683 + 1.167(20.0) - 0.00340(20 . 0) 

= 20.30. (5.6) 

5.1. 3 . Results of the test for equality of parameters 

Equation (4 . 9) gives the formula for the F-statistic to be used in 

testing the es timated parameters from the two periods for equality. Tile 

null hypothesis is H0 : 81 = a2, where the subscript refers to the 

period. A significant observed F-statistic at the five percent level 

results in rejection of a0 , supporting the conclusion that the models for 

the two periods are significantly different . 

Notice that 81 = (811 e12 813) 1 and 82 = (821 822 823) 1 if the 

models are quadratic. Tilen the null hypothesis can be rewritten as 



www.manaraa.com

62 

This is an "and" statement . 

For the entire statement to be true, all three component statements must 

be true simultaneously. Thus, if e21 = 0 and ell is significantly 

different from zero, then el is significantly different from e2, which 

infer s that the models from the two periods are not the same. 

For example, consider the estimated equations for the Motomco me t er 

provided in Table 5.8. In 1979, the selected model is quadratic, with 

all three coefficients significant . But, the selected model for 1981- 82 

is quadratic with 821 = O. Thus, logically, 8
1 

is significantly 

different from 82 , and H0 is rejected for the Motomco meter . The 

F-statistic was not calculated for this meter. 

Similar situations occur for the Burrows and Steinlite meters , whe r e 

a quadratic model is selected for t he 1979 data and a linear model is 

selected for 1981-82. For each of these meters, 823 = 0, but 813 is 

significantly different from zero . Thus, H0 is rejected for these two 

meters, as well. For the sake of curiosity, though, the F-statistics 

comparing the quadratic models for these meters were calculated. 

The observed F-statistics for the Burrows, GAC II, and Steinlite 

meters and the conclusions of the test are reported in Table 5.9 . For 

all four meters, then, whether tested logically or statistically, we 

conclude that the parameter estimates from the two periods are signifi -

cantly d i fferent from each other . Thus, for each meter , the model of 

M = g(T) for 1979 data is not the same as the model for 1981-82 data . 

Recalibration of the moisture meters was effective in changing the 
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relationship between meter measures of moisture content and the true 

value. 

Table 5.9. Results of the F-test for equality of parameter 
estimates 

Meter Fobs Prob(F) Fobs) Conclusion 

Burrows 509.39 0 Reject Ho 
GAC II 205.26 0 Reject Ho 
Steinlite 1836.3 0 Reject Ho 

5.2. Tile Probability Distributions of Meter Measurement 

5.2.1. Estimates of the individual means and variances 

Equations (4.15) and (4.16) give the formulas to be used for 

calculating estimates of the mean and the variance of the individual 

2 probability distribution of M , where M ~ N(µ , o ) for a particular 
T T T T 

value of true moisture content, T = T. These equations are repeated here 

for convenience: 

; 2 = T'D(bG)T + v • 
T T T T 

AG 
T' is a row vector representing Tm T , b contains the parameter T 

(5. 7) 

( 5.8) 

G ~ estimates of M = g(T), D(b) is the dispersion matrix associated with b , 
A 

and v is the value of the variance function at T • T. 
T 
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A A 

The selected estimated equations for Mand V, and the dispersion 

matrices, for each meter are summarized in Tables 5.lO(a) and (b) for 

1979 and 1981-82, respectively. We now have all the information 

necessary to calculate individual means and variances at any value of T. 

For example, let T = 14.7 percent. For the Steinlite meter in 1979, 

the mean µ
14

_
7 

is 

A 

µ14.7 D M14.7 = 15.65, 

which was found in equation (5.4). The variance is 

a (1 14.7 14.7 2) l.6xl0-3 -1.7xl0-4 4.2xlo-6 
1 

l.9xl0-5 -4.7xl0-7 14.7 

symm. 

- 0.00001 + 0.01307 

= 0.01308, 

-8 l.2x10 

where v14•7 was found in equation (5.1). Thus, M14 _7 ~ N(l5.65, 0.01308) 

for the Steinlite meter in 1979. 

Let Ta 15.9 percent and Ti 5 •9 • (15.9 15.92). Then, for the 

Motomco meter in 1981-82, 

A 

µ15.9 = Ml5.9 • 15 "15 
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Table 5.10. Summary of estimated equations and dispersion matrices 

a) 1979 
Meter 

Burrows 

GAC II 

Motomco 

Steinlite 

b) 1981-82 
Meter 

Burrows 

GAC II 

Motomco 

Steinlite 

A v 
A 

M 
A v 
A 

M 
A v 
" M 
A v 
M 

A v 
M 
v 
A 

M 
A v 
A 

M 
A v 
A 

M 

Estimated equations 
A 

0.193 - 0.0219T + 0.000694T2 v = 
A 

-1.530 + l.160T - 0.00221T2 M = 
A 

0.207 - 0.0231T + 0.000709T2 v = 

M = -1.683 + l.167T - 0.00340T2 
A 

0.0107T + 0.000438T2 v = 0.0827 -
A 

-1.598 + l.189T - 0.00576T2 M = 
A 

v = -0.0464 + 0.00404T 
A 

-1.948 + l.336T - 0.00944T2 M = 

Estimated equations 
A 

0.000420T2 v = o. 0721 - O.OlOOT + 
A 

M = -2.154 + l.0966T 
" O. 000716T2 v = 0.174 - 0.0216T + 
A 

0.740 + 0.821T + 0. 00656T2 M = 

v = 0.127 - 0.0172T + 0.000652T2 

A 

0.883T + 0.00441T2 M = 
A 

0.000419T2 v = 0.0897 - 0.0118T + 
A 

M = -1.452 + 1. 0516T 

10-3 
( 4.1 x -4.2 x 

4.4 x 
symm. 

10-3 
( 3.9 x -4.0 x 

4.1 x 
symm. 

10-3 
( 3.4 x -3.5 x 

3.7 x 
symm. 

( -3 1. 6 x 10 -1. 7 x 
1. 9 x 

symm. 

-4 
( 1. 9 x 10 

symm. 

10- 3 
( I. I x -1.1 x 

1.2 x 
symm. 

10-7 
( 3. 3 x 

symm. 

( -5 5.3 x 10 
symm. 

10-4 
10-s) 1.0 x 

10-5 -1. l x 10-6 
10-8 2.7 x 

10-4 
10-

6
) 9.6 x 

10-5 -1.0 x 10-6 
10-8 2.6 x 

10-4 
10-

6
) 8.4 x 

10-5 -9.1 x 10-7 
10-8 2.3 x 

10- 4 
10-6) 4.2 x 

10-5 -4.7 x 10-7 
10-8 l. 2 x 

10-6) -9.9 x 
5.5 x 10-7 

10-4 -6) 2. 2 x 10 
10-5 -2. 9 x 10-7 

7.3 x 10-9 

10-8 ) -1.5 x 
7.1 x 10-10 

10-6) -2.7 x 
1. 5 x 10-7 
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from equation (5 . 5), and 

= 0.00001 + 0.01805 

= 0.01806, 

AG A 
where D(b ) can be found in Table 5.10 and v15 •9 was found in equation 

(5.2) . Thus, M - N(l5 .15, 0.01806) for the Motomco meter in 15.9 
1981-82. 

Fina lly, in 1979, for the GAC II meter, when T = 20.0 and 

I ( 20 202), T20 . 0 = l 

20 . 30, 

found in equation (5 . 6), and 

= 0.02837, 

AG 
where D(b ) is given in Table 5.10 and v20 •0 was found in equation (5.3) . 

M20 . 0 - N(20 . 30, 0.02837) for the GAC II meter in 1979. 

5.2.2. Probability calculations 

2 Now that we have estimtes of µ and a for any value of true 
T T 

moisture content, T = T, we can use equation (4.17) to calculate the 

probability of various types of measurement error . That is, given that 

T = T, the probability that the corresponding meter measurement is 
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greater than or less than a specified value of, say, m, is 
A 

M -µ m-µ 

Pr(MT~mlT=T) =Pr( :TT ~ OTT) 

= Pr(Z ~ z ) m, T 
( 5.9) 

This formula may be used to calculate probabilities of different types of 

error for the various meters. Examples of calculations follow. 

Suppose we have a sample of corn with true moisture content of 14.7 

percent that was tested for moisture content using the Steinlite meter in 

1979. The probability that the meter read a value greater than 15.5 

percent was: 

Pr(
Ml4:7-µ14.7 ) 15 •5-µ14.7) Pr(M14 •7>15.5IT=l4.7) = .. 

0 14.7 °14.7 

• Pr(Z ) 15.5-15.65) 
0.114 

.. Pr(Z ) -0.917) 

= 0.821, (5.10) 

A2 
where µ14 •7 and 0 14 •7 were found in section 5.2.1. Thus, there is an 

82.l percent chance that the meter will read a value greater than 15.5 

percent when the corn has a true moisture content of 14.7 percent. 

Notice that this corn would have been discounted when it should not have 

been. 

Suppose a sample of corn with a true moisture content of 15.9 

percent is to be tested using a Motomco meter. Since the meter calibra-

tions of 1981-82 are current, the probability that the meter will read a 

value less than 15.5 percent is 
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Pr(
M15:9-µ15.9 s_ 15 •5-µ15.9) Pr(M (15.5IT=15.9) • .. 

15.9- 0 15.9 °15.9 

Q p (Z < 15.5-15.15) 
r - 0.134 

"" Pr(Z ( 2. 986) 

"" 0.999, (5 . 11) 

A2 
where µ15 _9 and 0 15 •9 were found in section 5.2.1. The probability is 

99.9 percent that the meter will read a value leas than 15.5 percent when 

the corn has true moisture content of 15.9 percent. Notice that this 

corn would not be discounted for excessive moisture content when it 

should be. 

One final illustration calculates the probability that the meter 

would read a value greater than a true moisture content of T • 20.0 

percent for the GAC II meter in 1979: 

A A 

M -1.1 

Pr(M20 _0>20.01T=20.0) ~ Pr( 
20~~0 -~

0 - 0 > 
20.0(µ20.0) 

0 20.0 

• Pr(Z ) 20.0-20.30) 
0.168 

• Pr(Z ) -1.51) 

... 0.934. (5 . 12) 

These methods will be used in the next section to calculate the 

probabilities of various types of error. 
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5.3. Probabilities of Error 

5.3.1. The probability of discounting when should not 

A sample of corn with a true moisture content of 15.5 percent or 

less meets the moisture content standards for No. 2 corn and should not 

be discounted for excessive moisture content. But, it will be discounted 

if the electronic moisture meter used for testing its moisture content 

gives a reading greater than 15.5 percent. For a particular value of 

T - 1, where T ~ 15.5, the probability of this sample of corn being 

discounted when it should not be is 

Pr(M )15.5ITmT). 
T 

The methods in section 5.2 can be used to calculate this probability for 

relevant values of T. 

For example, consider a sample of corn with a true moisture content 

of 14.7 percent, which should not be discounted for excessive moisture. 

If this sample were tested by a Steinlite meter in 1979, the probability 

that it would have been discounted, from equation (5.10), is 

Pr(M14 _7>15.5IT•l4.7) a 0.821. 

There was an 82.1 percent chance that this corn would have been wrongly 

discounted due to meter error in measurement. 

If this same sample were tested by the same Steinlite meter after 

1981, after recalibration of the meters, the probability that it would be 
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discounted when it should not be is 

Pr(M14 _7>15.5ITml4.7) a 0.0. 

Similar calculations were carried out for values of T at every one-

tenth of a percentage point between 9.5 percent and 15.5 percent. Tii.e 

resulting probabilities were plotted against true moisture content. Tii.is 

was done for each meter and for each period. Tii.ese graphs are displayed 

in Figures 5.1, 5.2, 5.3, and 5.4 for the Burrows, GAC II, ~tomco, and 

Steinlite meters, respectively. Each figure contains the graphs for both 

periods in order to facilitate easy visual comparison of the results, 

before and after recalibration. 

Let us look at these graphs for each meter individually. Consider 

first the Burrows meter. For some value of the moisture content smaller 

than 15.5 percent, the meter begins to read a value larger than 15 . 5 

percent with a probability greater than zero. 'nle relevant values of 

true moisture content, T = T, and the resulting probabilities for each 

period are displayed in Table 5.11. 

Table 5.11. Burrows: Selected probabilities of discounting 
corn that should not be discounted 

Burrows Pr(M )15.5IT~T) T 
T 1979 1981- 82 

14.9 0.027 o.o 
15.0 0.119 o.o 
15.l 0.335 o.o 
15.2 0.629 o.o 
15.3 0.862 0.0 
15.4 0.968 o.o 
15.5 0.995 o.o 
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not be discounted 
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Figure 5.2 . GAC II: Probabilities of discounting corn that should 
not be discounted 
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Suppose, in 1979, a farmer delivered a load of corn with a true 

moisture content of 15. 5 percent to a country elevator using a Burrows 

moisture meter to test for moisture content. This corn met the moisture 

content standards for grade No. 2. But, there was a probability of 

nearly one that this corn would be discounted for excessive moisture. In 

fact , if the corn had a true moisture content of 15.3 percent, there was 

a probability of 86.2 percent that the Burrows meter would give a reading 

greater than 15.5 percent, and thus cause the elevator manager to 

discount the price of the corn. However, since the meters were 

recalibrated, these probabilities are zero. 

Suppose the country elevators were using a GAC II meter. Then, in 

1979, there was, at worst, a probability of 62.6 percent that corn with a 

true mois ture content of 15.5 percent would be discounted . For values of 

T smaller than that, there was much less than a 50-50 chance of improper 

discounting. Tilese results are shown in Table 15.12. Notice that after 

recalibration, all probabilities are zero. 

Table 5.12. GAC II: Selected probabilities of discounting 
corn that should not be discounted 

GAC II 

15.2 
15.3 
15.4 
15.5 

1979 

0.024 
0.113 
0.327 
0.626 

Pr(M )15 . SIT•-r) 
T 

1981-82 

o.o 
0.0 
o.o 
o.o 

Consider now the Motomco meter. In 1979, at its worst, this meter 

would result in improper discounting of corn with true moisture content 
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of 15.5 percent only 22.6 percent of the time. Other values of T giving 

nonzero probabilities are revealed in Table 5.13. After recalibration, 

all probabilities are zero. 

Table 5.13. Motomco: Selected probabilities of discounting 
corn that should not be discounted 

Motomco 

lS.3 
lS.4 
15.5 

1979 
0.016 
0 .074 
0.226 

Pr(M )15 .SlT=1) 
1 

1981-82 
o.o 
o.o 
o.o 

Finally, the results for the Steinlite meter are the most striking, 

as was previewed by the probability examples at the beginning of this 

section. In 1979, a country elevator using the Steinlite meter to test 

for moisture content would discount corn with the moisture content of 

14.9 percent to 15.5 percent, which should not be discounted, 100 percent 

of the time. Corn with as low as 14.6 percent true moisture content had 

a SO-SO chance of being wrongly discounted. Since recalibration of the 

meters, these probabilities are all zero. Table 5.14 exhibits these 

results. 

Table S.14. Steinlite: Selected probabilities of discounting 
corn that should not be discounted 

Steinlite 

14.4 
14.5 
14.6 
14.7 
14.8 
14 . 9 
15.0 
15. 1 
15.2 
15.3 
15.4 
15.5 

1979 
0.025 
0.167 
0.496 
0.821 
0 .965 
0.996 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 

Pr(M >lS .S jT-1) 
1 

1981-82 
0 . 0 
o.o 
o.o 
o.o 
o.o 
o.o 
o.o 
0. 0 
o.o 
o.o 
o.o 
o.o 
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5 .3. 2. The probability of not discounting when should 

Corn with a true moisture content larger than 15.5 percent does not 

meet the grade requirement for No. 2 corn. It should be discounted for 

excessive moisture content, but it will not be if the electronic meter 

used to measure its moisture content reads a value of 15.5 percent or 

less. The probability of corn with a true moisture content of T = T, 

where T ) 15.5, not being discounted when it should be is 

Pr(M <15 .5 IT=T) . 
~ 

The methods described in section 5.2 can be used to compute this 

probability for r elevant values of T. 

For example, suppose a sample of corn wi th a true moisture con t en t 

of 15.9 percent was teste d on a Motomco meter in 1979. This corn should 

have been discounted for excessive moisture content. But, the 

probabili ty, determined in equation (5.11), that it was not discounted 

is 

Pr(M15 .~15.5jT=T) 0 . 027. 

There was a 2.7 percent chance that this corn would have been treated as 

meeting the s tandards. 

If this same sample were tested by the same meter after 1981, after 

recalibration, the probability of not discounting this corn when it 

should be is 

Pr ( Ml S .~15.5 I T= l 5 .9) ~ 0 .999. 
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Now the corn will almost certainly be found to meet the standards and 

will not be discounted. though, with a true moisture content of 15 .9 

percent, it should be discounted. Recalibration significantly raised the 

probability of making the wrong discount decision. 

Similar calculations were completed for values of T at every one-

tenth of a percentage point between 15.5 percent and 30.0 percent. The 

resulting probabilities were plotted against true moisture content for 

each meter and each period. The graphs of the results are displayed in 

Figures 5.5, 5.6, 5.7, and 5 . 8, for the Burrows, GAC II, Motomco, and 

Steinlite meters , respectively. Once again, each figure contains the 

graphs for both periods to facilitate easy visual comparison. 

Like before, let us examine these results more closely for 

individual meters. Consider first the Burrows meter. In 1979, a load of 

corn with true moisture content of 15.6 percent or greater, delivered to 

an elevator for sale, and tested for moisture content by a Burrows meter, 

would have been correctly discounted for excessive moisture. But since 

1981, corn with true moisture content between 15.6 percent and 15.9 

percent will almost certainly be found to be acceptable by trade 

standards, and will not be discounted for excessive moisture, though it 

should be. In fact, corn with true moisture content as high as 16.1 

percent has a probability of 63.5 percent of not being discounted. These 

results are listed in Table 5.15 . 

In 1979, the GAC II meter had a probability of only 13.7 percent of 

reading a value of moisture content within trade standards when the 

moisture content is actually 15.6 percent, a value that is unacceptable 
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Table 5.15. Burrows: Selected probabilities of not 
discounting corn that should be discounted 

Burrows Pr(M (15.5lT=T) 
"(-

"( 1979 1981-82 

15.6 
15.7 
15.8 
15.9 
16.0 
16.1 
16.2 
16.3 
16.4 
16.5 

o.o 
o.o 
o.o 
o.o 
o.o 
o.o 
o.o 
o.o 
o.o 
o.o 

1.00 
1.00 
0 .997 
0.973 
0.871 
0.635 
0.335 
0.119 
0.027 
0.0 

to the trade. After recalibration, corn with true moisture content of 

15.6-15.8 percent has a probability of one or almost one of not being 

discounted when it should be. Corn with a true moisture content of 16 . 0 

percent, a half percentage point too high, has nearly a 50 percent chance 

of not being discounted. Table 5.16 exhibits these results. 

Table 5.16. GAC II: Selected probabilities of not 
discounting corn that should be discounted 

GAC II Pr(M <15.5IT=T) 
"(-

"( 1979 1981-82 
15.6 0.137 1.00 
15.7 0.031 0 .997 
15.8 0.0 0.965 
15.9 o.o 0 .810 
16 .o o.o 0.478 
16.1 o.o 0.164 
16.2 o.o 0.029 
16.3 o.o o.o 
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In 1979, corn with a true mois t ure content of 15 . 6 percent, tested 

using a Motomco meter, had a probability of slightly greater than 50 

percent of not being discounted, though i t should be . This is r ela tively 

high when compared to other meters for that period. But , now, this 

probability is one or almost one for corn with true moisture content as 

high as 16 .0 percent. Corn with a true value of 16.3 percent has nearly 

a 50-50 chance of being allowed t o pass moisture tes t ing . Table 5 . 17 

exhibits these results. 

Table 5.17 . Motomco : Selected probabilities of not 
discounting corn that should be discounted 

Motomco Pr(MT~l5 . 5jT=T) 

T 1979 1981-82 
15.6 
15.7 
15.8 
15.9 
16 . 0 
16.l 
16 . 2 
16 . 3 
16.4 
16.5 
16. 6 
16.7 

0.526 
0.271 
0 . 101 

0 . 027 
o.o 
o.o 
0 . 0 
o.o 
o.o 
o.o 
o.o 
o.o 

1.00 

1. 00 
1.00 

0 . 999 

0 . 986 
0 . 924 
0 .751 
0. 475 
0 . 216 
0 . 067 
0 . 014 
o.o 

Finally, consider the Steinlite meter. In 1979, corn with true 

moisture content larger than 15. 5 pe rcent, tested on this meter, would 

have been judged, correctly , to be unacceptable t o the trade with r es pec t 

to moisture content. But , after recalibration, corn with true moisture 
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content as high as 16.0 percent has a probability of one or nearly one of 

not being discounted when it should be. 'nlese probabilities are 

displayed in Table 5.18. 

Table 5.18. Steinlite: Selected probabilities of not 
discounting corn that should be discounted 

Steinlite Pr ( M <15 • 5 I T-= T ) 
T-

T 1979 1981- 82 
15.6 0.0 1.00 
15.7 o.o 1.00 
15 .8 0 .0 1.00 

15.9 o.o 1.00 
16 .0 0.0 0.977 
16.1 o.o o. 787 
16.2 o.o 0 . 352 
16.3 0.0 0 . 063 
16.4 0.0 o.o 

5.3.3. Probabilities of other types of error 

Tile probabilities of other types of error can be computed using 

equations (5.7), (5.8), and (5.9), and the methods of sections 4.4 and 

5.2. Tilree specific examples--those described theoretically in section 

4.4.2--will be given here. 

For instance, the probability that the moisture meter will read a 

value larger than the true moisture content is 

Pr(M )TIT-T), 
T 

for any value of T s T . Specific examples follow, using the results 

presented in Table 5.10. 
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Suppose we have a sample of corn with a true moisture content of 

20 . 0 percent. In 1979, the probability that the GAC II meter would give 

a reading of moisture content greater than 20 . 0 percent was 

Pr(M20 •0>20.0IT=20.0) - 0.934 . 

This probability was calculated in equation (5.12) . That is, there was a 

93.4 percent chance that the meter would read a value larger than 20.0 

percent, the sample's true moisture content. If this sample of corn had 

a true moisture content of 26.0 percent, the probability that the GAC II 

meter would have read a larger value was 

Pr(M26 •0>26.0IT=26.0) ~ 0.863. 

Since 1981-82, after recalibration, this probability is 0.935. 

Probabilities of this type were calculated for each meter for each 

period for values of true moisture content between 10 .0 percent and 30.0 

percent. The resulting graphs, with probability plotted against true 

moisture content, are displayed in Figures 5.9, 5.10, 5.11, and 5.12 for 

the Burrows, GAC II, K:>tomco , and Steinlite meters, respectively. 

In addition, from equation (4.20), we may determine the probability 

that the size of the measurement error is larger (or smaller) than a 

specified value for a given T = T . Here we have computed the probability 

that the measurement error will be larger than 1.0 percent. Letting 

measurement error be denoted by E = M - T, this is 

Pr(E )1 . 0ITQT) • Pr(M )T+l.OIT=T). 
T T 
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Figure 5 . 9 . Burrows : Probabilities of the meter reading a value 
larger than the true moistu r e content 
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Figur e 5 . 10 . GAC II : Probabilities of the meter reading a value 
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For example, given a sample of corn with true moisture content of 15.5 

percent, the probability that the meter measurement error would be 

greater than 1.0 percent, using the Steinlite meter in 1979, was 

Pr(El5.5) 1.0IT=l5.5) = Pr(Ml5.5>16.5IT=l5.5) 

= 0.487. 

Probabilities of this type were calculated for values of T at one-

tenth intervals between 10.0 percent and 35.0 percent for the Motomco and 

Steinlite meters, for each period. The resulting graphs of probability 

plotted against true moisture content are presented in Figures 5.13 and 

5.14, respectively. 

The Motomco and Steinlite meters were chosen for the illustrations 

in the previous and the next examples because of their significance in 

the grain trade. The Motomco meter is used to determine the moisture 

content of corn in all trades requiring government inspection, and the 

Steinlite is the most commonly used meter at country elevators in Iowa . 

The final example is somewhat different from the others. In all of 

the previous examples, true moisture content was the independent variable 

in the probability calculations, and, thus, on the horizontal axis in the 

graphs of the results. Now we will fix the true moisture content, let 

the meter value vary, and ask the question: Given a sample of corn with 

true moisture content, T = T, what are the probabilities that the meter 

will read a value larger than various specified values, m, of M? Tilat 

is , we are interested in 
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Pr(M >mjT=T), • 
where ' is fixed while m varies. 

For example, given a sample of corn with a true moisture content of 

15.5 percent, the probability that the meter reading will be greater than 

16.0 percent is 

Pr(M15 •5>16.0jT=l5.5). 

For the Steinlite meter in 1979, this probability was equal to 1.0. 

Notice that, even though the corn had a true moisture content of only 

15 . 5 percent, the Steinlite meter was sure to give a reading larger than 

16.0 percent. 

Probabilities of the type 

are computed for values of m between 10 . 0 percent and 20.0 percent at 

intervals of one-tenth of a percent. This was done for the Motomco and 

Steinlite meters for both periods, and the resulting graphs are shown in 

Figures 5.15 and 5 . 16, respectively. In order to evaluate the 

performance of these meters, these graphs should be compared to the one 

in Figure 4.3, which illustrates the ideal graph of this type of 

probability. 
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6. CONCLUSIONS AND IMPLICATIONS 

1) Recalibration of the moisture meters did, indeed, have an effect . 

The results of the tests for equality of parameters reported in section 

5.1.3 support the conclusion that the relationship between meter 

measurements and true moisture content has changed due to recalibration, 

for all four brands of meters. In addition, comparison of the graphs of 

the probability of error with respect to true moisture content, for the 

types of error considered in section 5.3, lends strong support to the 

conclusion that recalibration was effective for all four meters. It is 

unfair to judge, though, that the meters are more accurate now than they 

were before recalibration. Within certain ranges, they are indeed more 

accurate; but in other ranges, the accuracy of the meters, in terms of 

the probability of error, has decreased. Thus, we conclude that there 

has been marked improvement in the meters at lower moisture levels, but 

more research must be done in order to achieve greater overall accuracy. 

2) The results revealed in Section 5.3.1 verify that, before recali-

bration, the meters were biased against the farmers. That is, it was 

very likely that, at the country elevator, corn with true moisture 

content close to, but less than 15.5 percent, would be treated like corn 

with moisture content greater than 15.5 percent, and the prices the 

farmers received for their corn would be discounted. This was especially 

true if the corn was tested for moisture content using a Steinlite meter. 

Since recalibration of the meters, this probability, of corn being 

discounted when it should not be, is equal to zero, for all four brands 

of meters. 
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3) The results displayed in section 5 . 3.2 suggest that the meters 

are now biased against the country elevators. That is, since recalibra-

tion of the meters, the probability is equal to one, or is very close to 

one, that the meters will read a value less than or equal to 15.5 percent 

when the corn actually has a true moisture content somewhat higher than 

15.5 percent. This corn should be discounted for excessive moisture 

content, but will not be. Thus, since this corn is not of acceptable 

moisture quality to meet trade standards , the elevators must condition 

this corn as necessary and must absorb the costs thereof. This trans-

lates into a loss of operating money to the elevators. 

4) Consider the variance functions relating the variance of three 

individual meter readings to the true moisture content. The estimation 

results appear in section 5.1.1. Recall that all es timated equations 

2 were statistically significant at the 0.001 level, but the R values, 

measuring the proportion of the variation in V explained by the model, 

were all relatively low. This suggests that the relationship between V, 

the variance, and T, the moisture content, is significant, but not very 

strong. That is, there is much randomness in the variability of the 

moisture meters that cannot be explained by the level of true moisture 

content . 

5) Theoretically, for generalized least squares models with the 

assumptions set forth in section 4.2.2 and estimated by the methods 

described there, we have 

E(MSE) E(ESS) 
edf 

where MSE mean- squared error, ESS 

E(ESS) = ---=-----edf 
edf 1, =--edf 

error sum of squares, and 
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edf =error degrees of freedom, all for the estimated model. But, as can 

be seen in the results reported in section 5 .1. 2, the estimate of MSE is 

quite different from one for all models. It is, in fact, much larger, 

the smallest being 38.438 (see Table 5 . 6). This is believed to be due to 

the poor fit of the variance function, which provided estimated variances 

used in the GLS estimation. This result also lends support to the 

conclusion that true moisture content alone is not sufficient in 

explaining the variability of the moisture meters. 

6) Further research into the variance function is recommended. 

Variability of the meters may be attributable to other factors not yet 

identified. Tilis is particularly suggested by the results for the 

Motomco meter. For moisture levels lower than 21 . 0 percent, the calibra-

tion of this meter was l eft unchanged during the period of recalibration . 

Yet its probability graphs in section 5 . 3 are quite different between the 

two periods. Titis lends support to the suggestion that meter readings 

are affected by differences in characteristics of the corn due to 

differences in growing seasons. Research by the Agricultural Engineering 

Department at Iowa State University is continuing in an attempt to 

identify other factors which affect the measurement of moisture content . 

In addition, other functional forms of the model in terms of true 

moisture content alone may be relevant. In the process of this study, a 

functional form of V in terms of the natural logarithm of T was briefly 

considered . It was found to be promising with regard to the variance 

function alone, but provided unacceptable results in the GLS estimation 

stage, in terms of the evaluation criteria used in this study and 

discussed in section 5.1.2. 
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7) The major results of this study have been with regard to the 

discount decision. That is, the primary focus has been on the proba-

bility of making the wrong discount decision. Drying charges are also 

related to moisture content. The results of this study may be extended 

into consideration of the probable size of measurement error in de ter-

mining the moisture content, and the impact on the drying charge. 

8) Some moisture meters are more accurate than others in certain 

ranges of moisture content. Thus, it may pay farmers to "s hop around" 

fo r an elevat or using a meter that will give a more favorable mois ture 

reading depending on whether the farmer wishes to sell or s t o re his 

grain. 

9) These results may be used in further study of the economic 

effects of the recalibration of the moisture meters. It should be noted 

that meter bias does not necessarily imply pricing bias in the same 

direc t ion . For instance, the current meter bais in favor of the farmer s 

should not be interpreted as pricing bias in their favor as well. Thus, 

particular consideration must be given t o the prospective effects of more 

accurate moisture measurement on the price-determining system and the 

cost structure at country elevators. 

10) Finally, one of the major results of this project is the method 

itself by which these probabilities of error were calculated. This 

procedure is relatively general, and may be applied in considering 1) the 

accuracy of mois ture meters in other states, 2) the accuracy of mois ture 

meters used on othe r commodities, or 3) the accuracy of measuring devices 

of other types, to name a few. 
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9. THEORETICAL APPENDIX 

The following was developed by G. W. Ladd specifically for the 

anlaysis required by this project. 

9.1. The Theory of the Estimation of M g(T) 

Define the following matrices: 

M when k = 3, T = 1 

1 

1 

l 

1 

1 

1 

l 

1 

1 

1 

1 

1 

1 

1 

t 
n 

t 
n 

t n 

and U 

( 9. 1) 
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where 

Mis a 3n x 1 column vector of original individual meter readings, 

mij; 

T is a 3n x k matrix of values of true moisture content; 

and 

U is a 3n x 1 column vector of stochastic error terms, uij• 

The elements of M and T are the original data. When k = 3, the elements 
2 of Tare of the form ti and ti. The subscripts are i = 1, 2, ••• , n, and 

j = 1, 2, 3, where n is the number of reported observations. Thus, 3n is 

the number of original observations on M. 

A model for these data is 

M a T8 + U, where 8 = e1 

when a quadratic model (k = 3) is being considered. The following 

generalized least squares (GLS) assumptions are relevant: 

1) E(U) = 0 

2) E(UU') = V 

where 
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v = 

0 

0 v 
n 

v 
n 

v n 

which is a 3n x 3n diagonal matrix. Each vi is the true variance 

associated with the mean of three individual meter readings on the same 

subsample. Notice that assumption (2) is the assumption of 

heteroscedasticity in the individual meter readings. 

According to the theory of GLS, the best linear unbiased estimate of 

a is 

where 
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(T'V- 1T)-l = Ev-l -1 n2v-1 -1 
1/ 3 Et iv i i i i i i i 

2 -1 3 -1 
Et 1 vi Etivi 
i i 

(9 .2) 

Symmetric 4 -1 r t 1 v 1 i 

1 1 , ••• , n, and 

1, 2 3. (9.3) 

In addition, we can obtain the following: 
A 

1) 'lbe variance-covariance, or dispersion, matrix of b is 

A A -1 -1 
var(b) = D(b) = (T'V T) • 

2) 'lbe error, or residual, sum of squares is 

2 -1 -1 -1 2 -1 A 

= Hm1 jv i - ( Hm .jvi , rrm1jt .v , rrm1jtivi )b 
j i ji 1 ji 1. i ji 

where i "" 1, . . . , n and j = 1, 2, 3 • 

3) E[ESS(b)] 3n - 3 = 3( n-1). 
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We do not have the original observations on the meter readings 

required for the above estimation. We do have reported observations on 

mean meter readings calculated as 

m = i 

3 
1/3 E mij. 

j =-1 

We now have the following matrices: 

M = 

where 

and 

mi 

m2 

m3 

m n 

when k .. 3, T = 1 

1 

1 

1 

1 

tl 

t2 

t3 

t n 

M = GM, 

T =GT, 

U "' GU. 

t2 
1 

t2 
2 
2 

t3 

G is an n x 3n grouping matrix defined as 

G = 1/3 1/3 1/ 3 0 0 0 
0 0 0 1/3 1/ 3 1/3 0 0 0 
0 0 0 0 0 0 1/3 1/3 1/3 0 

0 0 0 

and u = 

0 0 

0 0 0 

ul 

u2 

U3 

u n 

( 9 .4) 

1/3 1/3 1/3 
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Note that 

3 3 
mi=- E l/3m • 1/3 E mij' 

j•l ij j=l 

which gives the reported mean meter reading as necessary . Also, the i-th 

elements of T are 

and 

The data denoted in matrix form in equation ( 9.4) will be referred to as 

the grouped observations or the grouped data. 

The model associated with the grouped data is 

M .. T6 + U, ( 9. S) 

which is equivalent to 

GM =- GT6 + GU . 

The assumptions are: 

1) E(U) = o. 
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2) E(UU') • E(GUU'G') • G(E(UU'))G' 

2 GVG' • 1/3 v 1 

0 

0 

v 
n 

where GVG' is an n x n diagonal matrix of variances. 'nlis is the 

heteroscedasticity assumption for the grouped data. Note that 

(GVG')-l • 3 

0 

0 
-1 

v n 

The GLS estimate of 8 for the model desc ribing the grouped data is 

where 

Symmetric 

3 -1 
Etivi 
i 

4 -1 
Etiv i 
i 

-1 

-1 -1 
2 (T 'V T) from equation ( 9.2), 

( 9.6) 



www.manaraa.com

and 

(T'(GVG')- 1M) = 3 

from equation ( 9.3). Thus, 

- -1 
Em1vi 
i 

112 

= 

( 9 . 7) 

AG 
where b contains the parameter estimates for the original data and b 

contains the parameter estimates for the grouped data. Furthermore, from 

equation ( 9.6), we have the following result concerning the dispersion 
AG matrix for b : 

A A 

Tilus, we can use the reported grouped observations to compute b and D(b) 

f or the estimated relationship between individual meter readings and true 

moisture content. 

Finally, the error sum of squares associated with the model in 

equation (9 .S), describing the grouped data, is 

Using the following identities and results: 
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s v .. 
i 

( 9 .8) 

m "" i 

-2 
m '"' i 

and 

s 
v "" i 

it can be shown that 

3 
1/3 E mij, 

j•l 

3 2 
(1/ 3 E mij) , 

j=l 

3 2 
1/ 3[ ( E mij) 

j=l 

-2 
3mi], 

( 9 .9) 

s where vi is the i-th sample variance of three meter readings, as defined 

in equation ( 9.8) . Note that, as a true variance, vi is unknown. But an 
" S estimate of vi is vi, which is obtained from the estimated variance 

function in section 4.2.1. Thus, the elements of the last term in 

S " S -1 equation (9.9) are of the form (vi)(vi) • But 

where wi is the resulting estimated residual. Thus, 

s " S A 

vi vi+wi 
1 

wi 
- a ::I + -"s "s "s· 
vi vi vi 

( 9 .10) 
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Since our samples are sufficiently large so that large sample theory 

applies, we may take the probability limit of each side of equat ion 

(9 . 10) as follows: 

... l 

~ 

since plim wi = O. Therefor e, 

= n, 

and equation ( 9.9 ) can be written as 

ESS(bG) = ESS(b) - 3n . ( 9 .11 ) 

9 . 2. The F-test for Equality of Parameters 

In order to derive the F-statistic used in section 4. 3 for testing 

the equality of parameters, define the following models and estimation 

results fo r the original data : 

For period 1, the 1979 data, we have 
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For period 2, the pooled 1981 and 1982 data, we have 

Note that the matrices ~· Th, and Uh, h = l, 2, are of the form in 

equation ( 9 .1). 

where 

and 

'llle null hypothesis to be tested is HO : e 1 • e2, against the 

The test statistic is an F-ratio: 

Num 
F •--Denom • 

This F-statistic possesses an F distribution with k and 3(n1+n2) - 2k 

degrees of freedom. Each 1\i is the number of reported observations in 

period h, h c l, 2, and k is the number of parameters being estimated by 

the model. eh and bh are k x l. 

From equations ( 9 .6) and ( 9.7), Num can be computed as follows: 
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From equation ( 9 .11), we have for Denom: 

Since k is very small relative to n1 + n2 for our data and models, Denom 

can be computed as 

Denom • 
ESS(b~)+ESS(b;) 

3(n 1+n 2)-2k + 1. 

Thus, the results from the estimation using the grouped data can be used 

to test the equality of the parameters between periods for models 

describing individual meter readings. 
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